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• US Politics seems ever more polarized, but in what way?
• Affective Polarization:

• ANES ‘Feeling Thermometer’ In-party Out-party Gap: 25 in
1990 to 41 in 2016 (Iyengar 2021)

• Ideological Polarization:
• In 1994 64% of Republicans and 70% of Democrats were more

Right/Left wing than the Median Democrat/Republican. In
2014: 92% and 94%

• Factual Polarization is less clear:
• Hypothesis 1 (Post-truth): There has also been factual

polarization.
• Hypothesis 2 (Google): The internet at least produces factual

consensus.
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Factual Polarisation

• Alesina, Miano & Stantcheva 2020: Social Mobility, Inequality
and Tax Policy, Immigration.

• Iyengar & Peterson 2020: Economic performance indicators,
health care policy.

• “Empirical research on factual belief polarization around
citizens’ core issue attitudes is surprisingly sparse... Therefore,
relatively little is known about factual belief polarization, even
(or perhaps especially) at a basic descriptive level.” Rekker
2022 Some Evidence
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Motivated Reasoning

• Thaler 2023, Oprea Yuksel 2022
• Westen et al. 2008 & Moore et al. 2021 present fMRI

evidence
• Nyhan 2020 (JEP) “These tendencies can be especially

powerful in contexts like politics [with] strong directional
preferences..., low accuracy motives, and lack evidence that
would resolve factual disputes.”

• Taber & Lodge 2006: Participants presented with contradictory
arguments, more likely to counter-argue when disagree.

• Ditto & Lopez 1992: More likely to question negative medical
news
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Argument & Preview of Results

• I take a canonical model of sequential social learning and
introduce the novelty of motivated reasoning.

Greater
Access to

Information

Greater
Ideological
Polarization

More
Connected
Networks

Greater
Factual

Polarization
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Argument & Preview of Results II

1. With sufficiently ‘precise’ private signals, complete learning (i.e.
Bayesians learn) requires much more connected networks

2. Such private signals also make consensus impossible.
• Consensus can be broken by expanding the support of signals,

making ideological polarization more extreme, or both.

3. Polarization can be exacerbated by increasing the clustering and
connectivity of a network.

4. In some specific settings, motivated reasoning can help learning.
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The Model
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Model
The basic elements of the model are:

• θ ∈ {0, 1}: P(θ = 0) = 1
2

• n ∈ N chooses xn ∈ {0, 1} to maximize:

un(xn, θ) =
󰀫

1 if xn = θ,

0 if xn ∕= θ,
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The basic elements of the model are:

• θ ∈ {0, 1}: P(θ = 0) = 1
2

• n ∈ N chooses xn ∈ {0, 1} to maximize:

un(xn, θ) =
󰀫

1 if xn = θ,

0 if xn ∕= θ,

• Private signal ςn ∈ S ∼ (F0,F1) (mutually a.c., distinct)
• Bayesian private belief pn distributed according to (G0,G1).
• {xk : k ∈ B(n)} ∼ Qn, independent neighborhoods

• ⇒ Behavioral social belief msbn (sbn) Specification

• Type τn ∈ {0, B, 1}:
• P(τn = 0) = P(τn = 1) = 1

2 (1 − β) i.i.d., β ∈ (0, 1)
• Mostly β ≈ 0, though β ≈ 1 highlights fragility of standard

model
• The solution concept is (effectively) PBE.

John Cremin, AMSE The Model 9 / 31



Introduction The Model Stationarity Two Agent Example Learning Consensus Learning via Motivated Reasoning Summary

Motivated Reasoning

Consider τn = 0:
• R ∈ (1

2 , 1) parametrizes Signal Rejection
• s ∈ [0, 1) parametrizes Prior Shifting

1
2

1
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Consider τn = 0:
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• s ∈ [0, 1) parametrizes Prior Shifting
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2Prior: 1
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Characterizing Outcomes

• For each agent, let χn be the action of their Bayesian
equivalent.

• Let αn be their Bayesian accuracy : αn := Pσ(χn = θ)

Definition: Learning & Consensus
Complete Bayesian learning obtains if χn converges to θ in probability

lim
n→∞

αn := lim
n→∞

Pσ(χn = θ) = 1

Consenus obtains if xn converges to ω for any ω ∈ {0, 1} in probability

lim
n→∞

Pσ(xn = ω) = 1
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Stationary Beliefs & Signal Structures
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Cascade & Stationary Beliefs I

• Private Beliefs can be bounded or unbounded :
• Bernoulli trials (or any finite signal structure) ⇒ bounded.
• Normal Signals ⇒ unbounded.
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• Private Beliefs can be bounded or unbounded :
• Bernoulli trials (or any finite signal structure) ⇒ bounded.
• Normal Signals ⇒ unbounded.

Suppose private beliefs have support [B, B], 0 < B < B < 1.
• If τn = B, Bayesian social beliefs in (1 − B, 1 − B) can be

overturned.
• If τn = 0, this becomes (b0, b0), b0 > 1 − B and b0 > 1 − B
• Hence τn = 0 cascade beliefs are [0, b0] ∪ [b0, R).

0 1-R 1 − B b0 1
2

1 − B b0 R 1
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Cascade & Stationary Beliefs II

Definition: Stationary Beliefs
A Bayesian social belief, sb, is a stationary belief if it is a cascade
belief for each type.
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Nonstationary Signal Structures

• If for (F0,F1, s, R) there are no stationary beliefs, the signal
structure is nonstationary.

• Otherwise is it stationary.

0 b1 1 − B 1
2

1 − B b0 1
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Nonstationary Signal Structures

• If for (F0,F1, s, R) there are no stationary beliefs, the signal
structure is nonstationary.

• Otherwise is it stationary.

0 1-R b1 1 − B 1
2

1 − B b0 R 1
• If R < min{1 − b1, b0}, the signal structure is nonstationary.

• Need large s, low R, or large support [B, B].
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Stationary vs Nonstationary Signals

0 1-R b1 B 1
2 B b0 R 1

(a) Stationary Signal Structure

0 1-Rb1 B 1
2 B b0R 1

(b) Nonstationary Signal Structure

Figure: Signal Structures
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Two Agent Example
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Two Agent Example
• First consider two Bayesians: Agent n (he) and Neighbor

n − 1 (she)
• Suppose n − 1 receives a symmetric binary social signal,

sbn−1 ∈ {0.1, 0.9}

n − 1

Agent
n

ςn−1

ςn

sbn−1
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• First consider two Bayesians: Agent n (he) and Neighbor

n − 1 (she)
• Suppose n − 1 receives a symmetric binary social signal,

sbn−1 ∈ {0.1, 0.9}

n − 1

Agent
n

ςn−1

ςn

sbn−1

• P(xn−1 = θ|θ) ≥ 0.9 by improvement, and P(xn = θ|θ) ≥ 0.9
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Two Agent Example II

• But what if n − 1 is a motivated reasoner?
• Suppose 50/50 type, s = 0, R = 0.7

n − 1

Agent
n

ςn−1

ςn

sbn−1
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Two Agent Example II

• But what if n − 1 is a motivated reasoner?
• Suppose 50/50 type, s = 0, R = 0.7

n − 1

Agent
n

ςn−1

ςn

sbn−1

• n observes xn−1, not χn−1.
• Improves on e.g. 1

2(0.75 + 0.91) = 0.83 with {2(1 − ς), 2ς}.
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Two Agent Example III
• Instead suppose n observes sbn−1

n − 1

Agent
n

ςn−1

ςn

sbn−1
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Two Agent Example III
• Instead suppose n observes sbn−1

n − 1

Agent
n

ςn−1

ςn

sbn−1

• n − 1 Bayesian: n improves on sbn−1, observing ςn and
learning about ςn−1 through xn, unless sbn−1 is a Bayesian
cascade belief
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Two Agent Example III
• Instead suppose n observes sbn−1

n − 1

Agent
n

ςn−1

ςn

sbn−1

• n − 1 Bayesian: n improves on sbn−1, observing ςn and
learning about ςn−1 through xn, unless sbn−1 is a Bayesian
cascade belief

• n − 1 Motivated: n improves on sbn−1, observing ςn and
learning about ςn−1 through xn, unless sbn−1 is a stationary
belief
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Learning
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Expanding Sample Sizes & Complete Bayesian Learning

Expanding Observations (Deterministic) General Versions

A network topology has expanding observations if we have
lim

n→∞
max

b∈B(n)
b = ∞

Expanding Sample Sizes (Deterministic) General Versions

A network topology has expanding sample sizes if we have
lim

n→∞
|B(n)|= ∞
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Expanding Sample Sizes & Complete Bayesian Learning

Expanding Observations (Deterministic) General Versions

A network topology has expanding observations if we have
lim

n→∞
max

b∈B(n)
b = ∞

Expanding Sample Sizes (Deterministic) General Versions

A network topology has expanding sample sizes if we have
lim

n→∞
|B(n)|= ∞

• We move from indirect access to ever more neighbor actions,
to direct access.
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Expanding Sample Sizes & Complete Bayesian Learning

Theorem
Complete Bayesian learning obtains only if the network topology
satisfies expanding sample sizes.
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Fragility of Correct Bayesian Consensus

• This last theorem can be interpreted as a sort of fragility
result, but a more compelling one is the following:

Corollary
In any learning game without ESS where β = 1 produces correct
consensus (a.s. only finitely many Bayesians fail to match the
state), setting β < 1 ensures that a.s. infinitely many Bayesians
will instead fail to match the state.
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Fragility of Correct Bayesian Consensus

• This last theorem can be interpreted as a sort of fragility
result, but a more compelling one is the following:

Corollary
In any learning game without ESS where β = 1 produces correct
consensus (a.s. only finitely many Bayesians fail to match the
state), setting β < 1 ensures that a.s. infinitely many Bayesians
will instead fail to match the state.

• E.g. from Rosenberg & Vieille 2019 we know that in line
networks with very informative private signals we have almost
sure learning, but any amount of motivated reasoning breaks
this.
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Consensus
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Consensus

Theorem
1. Complete Bayesian learning implies consensus does not obtain. (∀Q)

2. Thus consensus cannot obtain with nonstationary signal structures.
(∀Q)

3. Consensus can occur with stationary signal structures. (∃Q)

0 1-R b1 1
2 b0 R 1

John Cremin, AMSE Consensus 26 / 31



Introduction The Model Stationarity Two Agent Example Learning Consensus Learning via Motivated Reasoning Summary

Learning via Motivated Reasoning
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Nested Neighbors

Nested Neighbor
m is a nested neighbor of n if Q(B(m) ⊆ B(n)) = 1.

1 2 3

4
• B(4) = {2, 3}, 3 is a nested neighbor
• Complete network: all B(n) are nested

neighbors.
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Nested Neighbors

Nested Neighbor
m is a nested neighbor of n if Q(B(m) ⊆ B(n)) = 1.

1 2 3

4
• B(4) = {2, 3}, 3 is a nested neighbor
• Complete network: all B(n) are nested

neighbors.
• If m is a nested neighbor of n, n knows sbm.
• Each social belief induces an independent binary experiment

• Defining success parameters {p0(sb), p1(sb)}, Nonstationarity
guarantees p1(sb) − p0(sb) > 0 ∀sb ∈ [0, 1]
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Expanding Nested Samples & Learning

Expanding Nested Samples (Deterministic)
For agent n, let Bn(n) ⊆ B(n) be the set of nested neigbors of n.
A network topology has expanding nested neighbor samples if for
all K ∈ N, we have:

lim
n→∞

|Bn(n)|= ∞
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Expanding Nested Samples & Learning

Expanding Nested Samples (Deterministic)
For agent n, let Bn(n) ⊆ B(n) be the set of nested neigbors of n.
A network topology has expanding nested neighbor samples if for
all K ∈ N, we have:

lim
n→∞

|Bn(n)|= ∞

Theorem 3
If a network topology has expanding nested samples, and the
information structure is nonstationary, complete Bayesian learning
obtains.
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Expanding Nested Samples

• Public commenting, the sequential structure of the game, and
the development of more connected & clustered networks lend
some credence to this assumption.

• Proposition 2: for any 󰂃 > 0, there is some M󰂃 ∈ N such that
the probability any agent has a rejection-region belief is at
least 1 − 󰂃. Formal Statement

• Other ‘Large Sample Principle’ results require a core of agents
to observe the complete history with some non-zero
probability. Royal Family
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Summary

• ESS Theorem ⇒ Complete Bayesian Learning requires much
more connected networks: those with expanding sample sizes.
This suggests Bayesian models are fragile.

• Con Theorem ⇒ Consensus is only possible with a stationary
signal structure, and our stylized facts give reason to think
these consensuses will break. This can help explain
polarization.

• ENS Theorem ⇒ Ever more clustered & connected
neighborhoods reinforce these two results. Expanding nested
samples is a sufficient condition for learning with
nonstationary signals. Theorem 2 Slides
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Factual Polarization II

(a) Economic Perceptions (b) Global Warming
Back
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Why model Motivated Reasoning this way? Back

• These agents behave as if for some c1, c2 ∈ R+:
1. They can pay c1 to reject social signals,
2. If not, they solve:

arg min
msbn

KL(msbn, sbn) + c2 × msbn
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• Social belief: Oprea Yuksel 2022 & Conlon et al. 2023.
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• These agents behave as if for some c1, c2 ∈ R+:
1. They can pay c1 to reject social signals,
2. If not, they solve:

arg min
msbn

KL(msbn, sbn) + c2 × msbn

• Social belief: Oprea Yuksel 2022 & Conlon et al. 2023.
• Theorems 1 & 3 are robust to applying motivated reasoning to

the whole belief. Theorem 2 fails.
• Evidence Recruitment Story: Epley & Gilovitch 2016, Koszegi

2006
• Rejection: Little 2021

• Bénabou & Tirole 2003 Forgetting: Zimmermann 2022,
Saucet & Villeval 2019

• Information Avoidance: Oster, Shoulson & Dorsey 2013,
Ganguly & Tasoff 2017

• Can generalize to i.i.d. draw of (R, s), and can smooth out
discontinuity without loss.
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Line Network Learning

α

Observer

Observee
(0.5, 0.5) 1

1

0.75

α∗
0.7
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Line Network Example Details

Consider a line network with:
• No prior shifting s = 0, and R = 0.7.
• β = 0
• f1(ς) = 2ς, f0(ς) = 2(1 − ς) which gives fθ(·) = gθ(·)

ς

f1(ς)

f0(ς)

2

1

H(α) :=
α

2

󰀅
G0(α) + 1 − G1(1 − α)

󰀆
+

(1 − α)
2

󰀅
G0(1 − α) + 1 − G1(xα)

󰀆

󰁺󰂂

H(α) = α2 − α + 1
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EO & ESS General Versions

Expanding Observations
A network topology has expanding observations if for all K ∈ N,
we have

lim
n→∞

Qn( max
b∈B(n)

b < K ) = 0

Expanding Sample Sizes
A network topology has expanding sample sizes if for all K ∈ N, we
have

lim
n→∞

Qn(|B(n)|< K ) = 0

Back
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Proposition 2

• Agents have M-nested neighbor samples if they have at least
M nested neigbors.

Proposition 2: ENS & Consensus
For any 󰂃 > 0, there is an M ∈ N such that, if agents have
M-nested neighbor samples and the information structure is
nonstationary, then

lim inf
n∈N

Pσ(sbn > R|θ = 1) ≥ 1 − 󰂃

lim inf
n∈N

Pσ(sbn < 1 − R|θ = 0) ≥ 1 − 󰂃

asymptotically agents of non-congenial type each reject their
Bayesian social beliefs with probability at least 1 − 󰂃.
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Theorem 3: Royal Family/Subpopulation Example
• Let S ⊂ N be a ‘Royal Family’, if its members are observed by

all following agents.
• In Bala Goyal 1998, the presence of a ‘Royal Family’ can

prevent learning amongst other agents. Here the reverse effect
can arise.
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prevent learning amongst other agents. Here the reverse effect
can arise.

• Consider the following network topology:
• Suppose agents in S ′ = {10m : m ∈ N ∪ {0}} observe only

their predecessors in S ′.
• Also suppose that any agent within N \ S ′ has

B(n) ⊇ S ′ ∩ {1, ..., n − 1}
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• Here agents in N \ S ′ satisfy ENS, and we have learning.

Hence the asymptotic fraction of agents choosing each action
are the same as achieved by complete Bayesian learning.
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• Let S ⊂ N be a ‘Royal Family’, if its members are observed by

all following agents.
• In Bala Goyal 1998, the presence of a ‘Royal Family’ can

prevent learning amongst other agents. Here the reverse effect
can arise.

• Consider the following network topology:
• Suppose agents in S ′ = {10m : m ∈ N ∪ {0}} observe only

their predecessors in S ′.
• Also suppose that any agent within N \ S ′ has

B(n) ⊇ S ′ ∩ {1, ..., n − 1}
• Here agents in N \ S ′ satisfy ENS, and we have learning.

Hence the asymptotic fraction of agents choosing each action
are the same as achieved by complete Bayesian learning.

• With S ′ = {3m : m ∈ N} ∪ {1}, this is only true for two-thirds
of the population.
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Can motivated reasoning help with learning?

• Theorem 3 & The Royal Family Example show motivated
reasoners helping in some circumstances.

• Beyond this, even without ENS, motivated reasoners can
provide a path to learning.
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Can motivated reasoning help with learning?

• Theorem 3 & The Royal Family Example show motivated
reasoners helping in some circumstances.

• Beyond this, even without ENS, motivated reasoners can
provide a path to learning.

Assume we have:
1. The parameters of our early line network example, with

R = 0.9
2. S ′ = {10m : m ∈ N ∪ {0}} forming a line, index these agents

by j
3. S ′′ = {j : j ∈ {8, 13, 18, 23, ...}} ⊂ S ′

4. Suppose agents in N \ S ′ satisfy ESS with respect to S ′′
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• Let Zj ∈ {0, 1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

• From the Law of Total Covariance, we have:
|cov(xn(j), xn(j+5))|< 1

2
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• ...and similarly that |cov(xn(j), xn(j+5k))|≤ 1

2k .

Back

John Cremin, AMSE Learning via Motivated Reasoning 41 / 31



• Let Zj ∈ {0, 1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

• From the Law of Total Covariance, we have:
|cov(xn(j), xn(j+5))|< 1

2
• ...and similarly that |cov(xn(j), xn(j+5k))|≤ 1

2k .
• Hence

󰁓∞
k=0|cov(xn(j), xn(j+5k))|< ∞

Back

John Cremin, AMSE Learning via Motivated Reasoning 41 / 31



• Let Zj ∈ {0, 1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

• From the Law of Total Covariance, we have:
|cov(xn(j), xn(j+5))|< 1

2
• ...and similarly that |cov(xn(j), xn(j+5k))|≤ 1

2k .
• Hence

󰁓∞
k=0|cov(xn(j), xn(j+5k))|< ∞

Back

John Cremin, AMSE Learning via Motivated Reasoning 41 / 31


