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Polarization

® US Politics seems ever more polarized, but in what way?
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Polarization

® US Politics seems ever more polarized, but in what way?
o Affective Polarization:
® ANES ‘Feeling Thermometer' In-party Out-party Gap: 25 in
1990 to 41 in 2016 (lyengar 2021)
® |deological Polarization:
® In 1994 64% of Republicans and 70% of Democrats were more
Right/Left wing than the Median Democrat/Republican. In
2014: 92% and 94%
® Factual Polarization is less clear:

® Hypothesis 1 (Post-truth): There has also been factual
polarization.

® Hypothesis 2 (Google): The internet at least produces factual
consensus.
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Factual Polarisation

“Very" or "somewhat” safe "Very" or “somewhat" unsafe

Total 7%
Democrats
Independents

Republicans
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Factual Polarisation

“Very" or "somewhat” safe "Very" or “somewhat" unsafe

Total
Democrats

Independents

Republicans

e Alesina, Miano & Stantcheva 2020: Social Mobility, Inequality
and Tax Policy, Immigration.

® lyengar & Peterson 2020: Economic performance indicators,
health care policy.
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Factual Polarisation

“Very" or "somewhat” safe "Very" or “somewhat" unsafe

Total
Democrats

Independents

Republicans

e Alesina, Miano & Stantcheva 2020: Social Mobility, Inequality
and Tax Policy, Immigration.

® lyengar & Peterson 2020: Economic performance indicators,
health care policy.

e “Empirical research on factual belief polarization around
citizens’ core issue attitudes is surprisingly sparse... Therefore,
relatively little is known about factual belief polarization, even

(or perhaps especially) at a basic descriptive level.” Rekker
2022
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Motivated Reasoning

® Thaler 2023, Oprea Yuksel 2022

® Westen et al. 2008 & Moore et al. 2021 present fMRI
evidence

® Nyhan 2020 (JEP) “These tendencies can be especially
powerful in contexts like politics [with] strong directional
preferences..., low accuracy motives, and lack evidence that
would resolve factual disputes.”
® Taber & Lodge 2006: Participants presented with contradictory
arguments, more likely to counter-argue when disagree.
® Ditto & Lopez 1992: More likely to question negative medical
news
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Argument & Preview of Results

® | take a canonical model of sequential social learning and
introduce the novelty of motivated reasoning.

Greater Greater More
Ideological Access to Connected
Polarization Information Networks

|

Greater
Factual
Polarization
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Argument & Preview of Results Il

1. With sufficiently ‘precise’ private signals, complete learning (i.e.
Bayesians learn) requires much more connected networks

2. Such private signals also make consensus impossible.

® Consensus can be broken by expanding the support of signals,
making ideological polarization more extreme, or both.

3. Polarization can be exacerbated by increasing the clustering and
connectivity of a network.

4. In some specific settings, motivated reasoning can help learning.
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Model

The basic elements of the model are:
e 9e{0,1}: P(O=0)=3
¢ n € N chooses x, € {0,1} to maximize:

1 ifx,=20,

n n79:
il ) =10 i x4 0.
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* §e{0,1}: P(# =0)=1
¢ n € N chooses x, € {0,1} to maximize:

1 ifx,=20,

n n79:
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® Private signal ¢, € S ~ (Fo,F1) (mutually a.c., distinct)
® Bayesian private belief p, distributed according to (Go, G1).
® {xx: k € B(n)} ~ Q,, independent neighborhoods

® = Behavioral social belief msb, (sbp)
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Model
The basic elements of the model are:
0e{0,1}: P(9=0)=3
n € N chooses x, € {0,1} to maximize:

1 ifx,=20,

n n79:
tin(>n; 9) {0 if x % 0,

Private signal ¢, € S ~ (Fg,F1) (mutually a.c., distinct)
® Bayesian private belief p, distributed according to (Go, G1).
{xk : k € B(n)} ~ Qp, independent neighborhoods
® = Behavioral social belief msb, (sbp)
Type 7, € {0, B, 1}:
* P(r, =0)=P(r, =1) = 3(1 - B) i.id., B €(0,1)
® Mostly 8 ~ 0, though 8 = 1 highlights fragility of standard
model

® The solution concept is (effectively) PBE.
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Motivated Reasoning

Consider 7, = O:
® Re (%, 1) parametrizes Signal Rejection

® s ¢ [0,1) parametrizes Prior Shifting

NI—=

()

Nl—= ——
T D
=S

John Cremin, AMSE The Model 10 / 31



Introduction The Model Stationarity Two Agent Example Learning Consensus Learning via Motivated Reasoning Summary
000000 [e]e] e} 00000 0000 0000 e]e] 0000 o]

Motivated Reasoning

Consider 7, = O:
® Re (%, 1) parametrizes Signal Rejection
® s ¢ [0,1) parametrizes Prior Shifting

NI—=

Prior: %(1 —s)
A A
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Nl—= ——
T D
=S
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Characterizing Outcomes

® For each agent, let x, be the action of their Bayesian
equivalent.

® let ay, be their Bayesian accuracy: ap = Py(xn = 0)

Definition: Learning & Consensus
Complete Bayesian learning obtains if x, converges to 6 in probability

lim a,:= lim P,(x,=0)=1

n— o0 n— oo

Consenus obtains if x, converges to w for any w € {0,1} in probability

lim Py(x, =w) =1

n—o0
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Stationary Beliefs & Signal Structures

John Cremin, AMSE Stationary Beliefs & Signal Structures 12 /31



Introduction The Model Stationarity Two Agent Example Learning Consensus Learning via Motivated Reasoning Summary
000000 0000 (o] lele]e] 0000 0000 e]e] 0000 o]

Cascade & Stationary Beliefs |

® Private Beliefs can be bounded or unbounded:

® Bernoulli trials (or any finite signal structure) = bounded.
® Normal Signals = unbounded.
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Cascade & Stationary Beliefs |

® Private Beliefs can be bounded or unbounded:

® Bernoulli trials (or any finite signal structure) = bounded.
® Normal Signals = unbounded.

Suppose private beliefs have support [B,B], 0 < B < B < 1.
® If 7, = B, Bayesian social beliefs in (1 — B,1 — B) can be
overturned.
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® Private Beliefs can be bounded or unbounded:

® Bernoulli trials (or any finite signal structure) = bounded.
® Normal Signals = unbounded.

Suppose private beliefs have support [B,B], 0 < B < B < 1.

® If 7, = B, Bayesian social beliefs in (1 — B,1 — B) can be
overturned.

e If 7, = 0, this becomes (by, bg), by > 1— B and by >1— B
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® Private Beliefs can be bounded or unbounded:
® Bernoulli trials (or any finite signal structure) = bounded.
® Normal Signals = unbounded.
Suppose private beliefs have support [B,B], 0 < B < B < 1.
® If 7, = B, Bayesian social beliefs in (1 — B,1 — B) can be
overturned.
e If 7, = 0, this becomes (by, bg), by > 1— B and by >1— B

® Hence 7, = 0 cascade beliefs are [0, by] U [bo, R).
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® Private Beliefs can be bounded or unbounded:
® Bernoulli trials (or any finite signal structure) = bounded.
® Normal Signals = unbounded.
Suppose private beliefs have support [B,B], 0 < B < B < 1.
® If 7, = B, Bayesian social beliefs in (1 — B,1 — B) can be
overturned.
e If 7, = 0, this becomes (by, bg), by > 1— B and by >1— B

® Hence 7, = 0 cascade beliefs are [0, by] U [bo, R).
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Cascade & Stationary Beliefs |l

Definition: Stationary Beliefs

A Bayesian social belief, sb, is a stationary belief if it is a cascade
belief for each type.
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Nonstationary Signal Structures

e If for (Fo,Fy,s, R) there are no stationary beliefs, the signal
structure is nonstationary.

® Otherwise is it stationary.
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Nonstationary Signal Structures

e If for (Fo,Fy,s, R) there are no stationary beliefs, the signal
structure is nonstationary.

® Otherwise is it stationary.
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Nonstationary Signal Structures

e If for (Fo,Fy,s, R) there are no stationary beliefs, the signal
structure is nonstationary.

® Otherwise is it stationary.
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® If R < min{1 — by, by}, the signal structure is nonstationary.
® Need large s, low R, or large support [B, B].
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Stationary vs Nonstationary Signals

P—e e I i l . D
0 b B > B B R 1
(a) Stationary Signal Structure
— © l i l P T

1-R 1 — —
0 & B 2 B R B 1

(b) Nonstationary Signal Structure

Figure: Signal Structures
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Two Agent Example
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Two Agent Example
® First consider two Bayesians: Agent n (he) and Neighbor
n—1 (she)

® Suppose n — 1 receives a symmetric binary social signal,
sb,—1 € {0.1,0.9}

Sn—1 sbn_1
Agent

Sn
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Two Agent Example
® First consider two Bayesians: Agent n (he) and Neighbor
n—1 (she)

® Suppose n — 1 receives a symmetric binary social signal,
sb,—1 € {0.1,0.9}

Sn—1 sb,_1

< Agent

® P(x,—1 = 0]0) > 0.9 by improvement, and P(x, = 6|6) > 0.9
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Two Agent Example Il

e But what if n — 1 is a motivated reasoner?
® Suppose 50/50 type, s =0, R =0.7

Sn-1 ———> «——  sbp_1

Agent
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Two Agent Example Il

e But what if n — 1 is a motivated reasoner?
® Suppose 50/50 type, s =0, R =0.7

Sn-1 ———> «——  sbp_1

Agent

® n observes xp_1, not xp—1.
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Two Agent Example Il

e But what if n — 1 is a motivated reasoner?
® Suppose 50/50 type, s =0, R =0.7

Sn—1 ——>| «——  sby1

Agent

Sn —>

® n observes xp_1, not xp—1.
* Improves on e.g. £(0.75+ 0.91) = 0.83 with {2(1 —¢), 2c}.
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Two Agent Example IlI

® |nstead suppose n observes sb,_1

Sbn—l

Sn
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Two Agent Example IlI

® |nstead suppose n observes sb,_1

Sn—1 ———| l——  sbp_1

Agent

Sn —>

® n — 1 Bayesian: n improves on sb,_1, observing ¢, and
learning about ¢,_1 through x,, unless sb,_1 is a Bayesian
cascade belief
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Two Agent Example IlI

® |nstead suppose n observes sb,_1

Sn—1 ———| l——  sbp_1

Agent

Sn —

® n — 1 Bayesian: n improves on sb,_1, observing ¢, and

learning about ¢,_1 through x,, unless sb,_1 is a Bayesian
cascade belief

® n— 1 Motivated: n improves on sb,_1, observing ¢, and

learning about ¢,_1 through x,, unless sb,_1 is a stationary
belief

John Cremin, AMSE Two Agent Example 20 /31
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Expanding Sample Sizes & Complete Bayesian Learning

Expanding Observations (Deterministic)

A network topology has expanding observations if we have

lim max b= o0
n—+00 be B(n)

Expanding Sample Sizes (Deterministic)

A network topology has expanding sample sizes if we have

Jim [B(n)]= o0
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Expanding Sample Sizes & Complete Bayesian Learning

Expanding Observations (Deterministic)

A network topology has expanding observations if we have

lim max b= o0
n—+00 be B(n)

Expanding Sample Sizes (Deterministic)
A network topology has expanding sample sizes if we have

Jim |B(n)|= o0

® We move from indirect access to ever more neighbor actions,
to direct access.
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Expanding Sample Sizes & Complete Bayesian Learning

Theorem
Complete Bayesian learning obtains only if the network topology
satisfies expanding sample sizes.
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Fragility of Correct Bayesian Consensus

® This last theorem can be interpreted as a sort of fragility
result, but a more compelling one is the following:

Corollary

In any learning game without ESS where § = 1 produces correct
consensus (a.s. only finitely many Bayesians fail to match the
state), setting 5 < 1 ensures that a.s. infinitely many Bayesians
will instead fail to match the state.
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Fragility of Correct Bayesian Consensus

® This last theorem can be interpreted as a sort of fragility
result, but a more compelling one is the following:

Corollary

In any learning game without ESS where § = 1 produces correct
consensus (a.s. only finitely many Bayesians fail to match the
state), setting 3 < 1 ensures that a.s. infinitely many Bayesians
will instead fail to match the state.

® E.g. from Rosenberg & Vieille 2019 we know that in line
networks with very informative private signals we have almost
sure learning, but any amount of motivated reasoning breaks

this.
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Consensus

Theorem

1. Complete Bayesian learning implies consensus does not obtain. (VQ)

2. Thus consensus cannot obtain with nonstationary signal structures.

(vQ)

3. Consensus can occur with stationary signal structures. (3Q)

¢—o . | | —
1-R 1 —
0 by 3 bg R 1
Consensus 26 /31
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Learning via Motivated Reasoning
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Nested Neighbors

Nested Neighbor
m is a nested neighbor of n if Q(B(m) C B(n)) = 1.

® B(4) ={2,3}, 3 is a nested neighbor

e Complete network: all B(n) are nested
neighbors.

John Cremin, AMSE
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Nested Neighbor
m is a nested neighbor of n if Q(B(m) C B(n)) = 1.

0 ® B(4) ={2,3}, 3 is a nested neighbor
‘ W e Complete network: all B(n) are nested
~ neighbors.
® If mis a nested neighbor of n, n knows sb,.
® Each social belief induces an independent binary experiment

® Defining success parameters {p°(sb), p!(sb)}, Nonstationarity
guarantees p'(sb) — p°(sb) > 0 Vsb € [0, 1]
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Expanding Nested Samples & Learning

Expanding Nested Samples (Deterministic)

For agent n, let B"(n) C B(n) be the set of nested neigbors of n.
A network topology has expanding nested neighbor samples if for
all K € N, we have:

Jim [B7(n)]= oc

John Cremin, AMSE Learning via Motivated Reasoning 29 /31
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Expanding Nested Samples & Learning

Expanding Nested Samples (Deterministic)

For agent n, let B"(n) C B(n) be the set of nested neigbors of n.
A network topology has expanding nested neighbor samples if for
all K € N, we have:

. NNl
Jlim [B7(n) = oc

Theorem 3

If a network topology has expanding nested samples, and the

information structure is nonstationary, complete Bayesian learning
obtains.
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Expanding Nested Samples

® Public commenting, the sequential structure of the game, and
the development of more connected & clustered networks lend
some credence to this assumption.

® Proposition 2: for any € > 0, there is some M, € N such that
the probability any agent has a rejection-region belief is at
least 1 — .

e QOther ‘Large Sample Principle’ results require a core of agents
to observe the complete history with some non-zero
probability.
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Summary

® ESS Theorem = Complete Bayesian Learning requires much
more connected networks: those with expanding sample sizes.
This suggests Bayesian models are fragile.

® Con Theorem =- Consensus is only possible with a stationary
signal structure, and our stylized facts give reason to think
these consensuses will break. This can help explain
polarization.

® ENS Theorem = Ever more clustered & connected
neighborhoods reinforce these two results. Expanding nested
samples is a sufficient condition for learning with
nonstationary signals.
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Factual Polarization |l

— Democrats - Independents — Republicans

o
- 1997 2001 2005 2009 2013 2017 2021

o - = - = Results are from surveys conducted in March except for November 1997

(a) Economic Perceptions (b) Global Warming
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Why model Motivated Reasoning this way?

® These agents behave as if for some ¢, € Ry
1. They can pay ¢; to reject social signals,
2. If not, they solve:

arg min KL(msb,, sb,) + ¢ x msb,

msbp,
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Why model Motivated Reasoning this way?

® These agents behave as if for some ¢, € Ry
1. They can pay ¢; to reject social signals,
2. If not, they solve:
arg min KL(msb,, sb,) + ¢ x msb,
msbp,
® Social belief: Oprea Yuksel 2022 & Conlon et al. 2023.
® Theorems 1 & 3 are robust to applying motivated reasoning to
the whole belief. Theorem 2 fails.
® Evidence Recruitment Story: Epley & Gilovitch 2016, Koszegi
2006
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® Social belief: Oprea Yuksel 2022 & Conlon et al. 2023.
® Theorems 1 & 3 are robust to applying motivated reasoning to
the whole belief. Theorem 2 fails.
® Evidence Recruitment Story: Epley & Gilovitch 2016, Koszegi
2006
® Rejection: Little 2021
® Bénabou & Tirole 2003 Forgetting: Zimmermann 2022,
Saucet & Villeval 2019
® Information Avoidance: Oster, Shoulson & Dorsey 2013,
Ganguly & Tasoff 2017
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Why model Motivated Reasoning this way?

® These agents behave as if for some ¢, € Ry
1. They can pay ¢; to reject social signals,
2. If not, they solve:
arg min KL(msb,, sb,) + ¢ x msb,
msbp,
® Social belief: Oprea Yuksel 2022 & Conlon et al. 2023.
® Theorems 1 & 3 are robust to applying motivated reasoning to
the whole belief. Theorem 2 fails.
® Evidence Recruitment Story: Epley & Gilovitch 2016, Koszegi
2006
® Rejection: Little 2021
® Bénabou & Tirole 2003 Forgetting: Zimmermann 2022,
Saucet & Villeval 2019
® Information Avoidance: Oster, Shoulson & Dorsey 2013,
Ganguly & Tasoff 2017
e Can generalize to i.i.d. draw of (R,s), and can smooth out
discontinuity without loss.
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Line Network Learning
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Line Network Learning

Observer
1

0.75 /

S~

Observee
(0.5,0.5) af7 059 1 «

John Cremin, AMSE Learning via Motivated Reasoning

00@0000000

34 /31



ay,

0008000000

1r
— 1= 0.7
s [ .0
a'(0.9) F
Ula) =a
a'(0.7) F
07 | 1 L L
0 10 20 30 40
n

John Cremin, AMSE

Learning via Motivated Reasoning

35 /31



0000@00000

Line Network Example Details

Consider a line network with:
® No prior shifting s =0, and R =0.7.
e 3=0
* fi(c) = 2, fo(s) = 2(1 — ) which gives f5(-) = go(")

f1(<) He) 1= 2 [eote) +1- €201 - )] + T2 [0 — 0 +1 - €30x)]
i}
fog(§) H@)=a? —a+1
1
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EO & ESS General Versions

Expanding Observations
A network topology has expanding observations if for all K € N,
we have

lim Q,( max b< K)=0

n—o00 beB(n)

Expanding Sample Sizes
A network topology has expanding sample sizes if for all K € N, we
have

Jim Qu(|B(n)|< K) = 0
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Proposition 2

® Agents have M-nested neighbor samples if they have at least
M nested neigbors.

Proposition 2: ENS & Consensus

For any € > 0, there is an M € N such that, if agents have
M-nested neighbor samples and the information structure is
nonstationary, then

liminf Py(sb, > Rl =1)>1—¢
neN

liminfPy(sbp <1—R|#=0)>1—¢
neN

asymptotically agents of non-congenial type each reject their
Bayesian social beliefs with probability at least 1 — .
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Theorem 3: Royal Family/Subpopulation Example

® Let S C N be a ‘Royal Family’, if its members are observed by
all following agents.

® |n Bala Goyal 1998, the presence of a ‘Royal Family’ can
prevent learning amongst other agents. Here the reverse effect
can arise.
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Theorem 3: Royal Family/Subpopulation Example

® Let S C N be a ‘Royal Family’, if its members are observed by
all following agents.

® |n Bala Goyal 1998, the presence of a ‘Royal Family’ can
prevent learning amongst other agents. Here the reverse effect
can arise.
e Consider the following network topology:
® Suppose agents in S’ = {10™: m € NU {0}} observe only
their predecessors in S’.

® Also suppose that any agent within N'\ §’ has
B(n)2 5 n{1,...,n—1}
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Theorem 3: Royal Family/Subpopulation Example

® Let S C N be a ‘Royal Family’, if its members are observed by
all following agents.

® |n Bala Goyal 1998, the presence of a ‘Royal Family’ can
prevent learning amongst other agents. Here the reverse effect
can arise.
e Consider the following network topology:
® Suppose agents in S’ = {10™: m € NU {0}} observe only
their predecessors in S’.
® Also suppose that any agent within N'\ §’ has
B(n)2 5 n{1,...,n—1}
® Here agents in N\ S satisfy ENS, and we have learning.
Hence the asymptotic fraction of agents choosing each action
are the same as achieved by complete Bayesian learning.
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Theorem 3: Royal Family/Subpopulation Example

Let S C N be a ‘Royal Family’, if its members are observed by
all following agents.

In Bala Goyal 1998, the presence of a ‘Royal Family' can
prevent learning amongst other agents. Here the reverse effect
can arise.
Consider the following network topology:
® Suppose agents in S’ = {10™: m € NU {0}} observe only
their predecessors in S’.
® Also suppose that any agent within N'\ §’ has
B(n)2 5 n{1,...,n—1}
Here agents in N\ S’ satisfy ENS, and we have learning.
Hence the asymptotic fraction of agents choosing each action
are the same as achieved by complete Bayesian learning.
With S = {3m: m € N} U {1}, this is only true for two-thirds
of the population.
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Can motivated reasoning help with learning?

® Theorem 3 & The Royal Family Example show motivated
reasoners helping in some circumstances.

® Beyond this, even without ENS, motivated reasoners can
provide a path to learning.
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Can motivated reasoning help with learning?

® Theorem 3 & The Royal Family Example show motivated
reasoners helping in some circumstances.

® Beyond this, even without ENS, motivated reasoners can

provide a path to learning.
Assume we have:

1. The parameters of our early line network example, with
R=0.9

2. 8 ={10": me NU{0}} forming a line, index these agents
by j

3. 8"=1{j:.je{8,13,18,23,...}} c &

4. Suppose agents in N\ S’ satisfy ESS with respect to S”
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0.9

0.8

0.7

® Let Z; € {0,1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

® From the Law of Total Covariance, we have:
|cov(Xn(j)s Xn(j4+5)) 1< %

John Cremin, AMSE Learning via Motivated Reasoning 41 /31



000000000 e

0.9
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0.7

® Let Z; € {0,1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

® From the Law of Total Covariance, we have:
|cov(Xn(j)s Xn(j4+5)) 1< %

e ...and similarly that [cov(xu(j), Xn(j+5k))| < 3%

2k*
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Let Z; € {0, 1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

From the Law of Total Covariance, we have:

|COV(Xn(j)7 Xn(j+5))|< %

...and similarly that [cov(x,(j), Xn(j+54))|<

1
2k

Hence > 32 o[ cov(Xu(j)s Xn(j45k))| < 00
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0.8

0.7

Let Z; € {0, 1} indicate rejection between j and j + 5, and
n(j) translate j to each agent’s actual index.

From the Law of Total Covariance, we have:

|cov(Xn(j)s Xn(j4+5)) 1< %

...and similarly that [cov(x,(j), Xn(j+54))|<

Hence > 32 o[ cov(Xu(j)s Xn(j45k))| < 00

1
2k
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