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Abstract

Modern society is increasingly polarized, even on purely factual questions, despite

greater access to information than ever. In a model of sequential social learning, I study

the impact of motivated reasoning on information aggregation. This is a belief formation

process in which agents trade-off accuracy against ideological convenience. I find that

even Bayesian agents only learn in very highly connected networks, where agents have

arbitrarily large neighborhoods asymptotically. This is driven by the fact that motivated

agents sometimes reject information that can be inferred from their neighbors’ actions

when it refutes their desired beliefs. Observing any finite neighborhood, there is always

some probability that all of an agent’s neighbors will have disregarded information thus.

Moreover, I establish that consensus, where all agents eventually choose the same action,

is only possible with relatively uninformative private signals and low levels of motivated

reasoning. JEL Codes: D72, D83, D85.

Keywords: Social Learning, Motivated Reasoning, Networks, polarization

1 Introduction

Why are we so polarized? On questions of ethics and ideology persistent disagreement is

unsurprising, yet polarization extends even to matters of fact: Was the 2020 election swung by

mass voter fraud? Is climate change man-made? Do vaccines cause autism? The ‘polarization

of reality ’ observed by Alesina et al. (2020) now seems a fixed feature of American politics;
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even before the 2020 election, 62% of Trump supporters endorsed the claim that millions of

illegal votes were cast in 2016, against 25% amongst Clinton supporters, whilst conversely

9% and 50% believed Russian tampering with vote tallies improved Trump’s performance

respectively (Nyhan, 2020). That partisan factual polarization has grown more severe1 would

seem paradoxical in a world with ever greater access to, and ability to share, information.

However, the obvious feature common to all these fields (politics, religion, ethics...) is their

emotional salience, and relevance to the very identity of the reasoner.

To study social learning on such questions, we must consider that people may be engaging

in motivated reasoning.2 If so, belief formation is no longer directed only at forming accu-

rate beliefs, but at striking a balance between this and the desire to believe that reality is

convenient or pleasant. Specifically, I model motivated reasoners as ignoring information that

can be inferred from their neighbors’ behavior when it provides strong evidence against their

preferred state, and using a biased prior otherwise. Precise details can be found in Section 3.

Experimentally, Oprea and Yuksel (2022) find evidence of motivated reasoning when subjects

form beliefs concerning their own IQ, and Guilbeault et al. (2018) show that increasing the

‘salience of partisanship’ can significantly damage social learning by provoking motivated rea-

soning. More generally, Westen et al. (2006) and Moore et al. (2021) use fMRI scanners to show

that emotional, not analytical, reactions are triggered by ‘threatening’ political information.3

As people become more polarized on ideology and values, as polling evidence suggests

they have (Geiger, 2021), the importance of understanding social learning with motivated

reasoning grows. Such value polarization implies stronger ‘directional motives’ (Little, 2021),

i.e. a greater desire to believe the true state of the world is congenial to one’s ideological

leanings, and thus even more biased belief-formation on purely factual questions. For example,

upon reading a study on the effectiveness of mask mandates, an agent growing more and more

libertarian will be more likely to conclude that they did not successfully suppress Covid-19.

Their ideological opposites, reading the same study, shall form even stronger opinions that

1As noted by Rekker (2022), there is a surprisingly sparse literature on the change in factual polarization
over time, and thus it is difficult to confidently establish that it has in fact increased. The literature on partisan
perceptions of economic performance provides some evidence of persistent and growing factual polarization
(Campbell et al., 1980; Gerber and Huber, 2009; Bartels, 2002), and in any case the pervasive interest in
‘post-truth’ politics suggests possible explanations of such an increase are worth pursuing.

2I do not suggest that this is the only possible explanation of polarization, but rather a particularly
plausible one for such subjects.

3Bénabou and Tirole (2016) observe that the emotional nature of some subjects is evident even without
fMRI scanners: ‘Heat versus light: Finally, in “motivated” [reasoning] there is also emotion. Challenging cher-
ished beliefs directly- like a person’s religious identity, morality, or politics- evokes strong emotional and even
physical responses of anger, outrage, and disgust. Such pushback is a clear “signature” of protected beliefs: not
only would a Bayesian always welcome more data, but so would any näıve boundedly rational thinker.’ They
also note the fact that low individual stakes are conducive to motivated reasoning (holding incorrect beliefs
about the extent to which climate change is man-made does not cause your own house to catch fire!), a point
reinforced by Zimmermann (2020).
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they did. This paper offers a resolution of the seemingly paradoxical coincidence of increased

factual polarization and the unprecedented ease of access to information we have today. I

show that increasing access to information, the connectivity of social networks, the level of

value polarization, or any combination of these three can break social consensus, and cause

individuals to divide along party lines. Hence the above stylised facts form a perfect storm for

factual polarization with motivated reasoners.

A canonical model economists have studied to analyse the spread of information and beliefs

is that of sequential social learning, where agents act in turn and observe both an independent

and identically distributed private signal, and a social signal: the behavior of some subset of

their predecessors. This allows the study of learning with arbitrary social networks, without

sacrificing sophisticated belief formation procedures. Agents each observe these signals, before

attempting to match their own action to the state, where both are binary. The exact subset of

predecessors observed is determined by the network topology: I study the conditions on this

and the private signals necessary for and/or sufficient to achieve learning.

I find that motivated reasoning seriously impedes both learning (where Bayesians even-

tually match the state with arbitrarily high probability) and consensus (where all agents

eventually choose the same action). Firstly, Consensus (eventual action unanimity) becomes

impossible as the support of private beliefs expands, as this ensures that all social beliefs

are either rejected or too weak to command unanimity (Theorem 1). The absence of even

complete-network4 consensus with unbounded beliefs, despite common knowledge of the true

model, reflects the comparatively extreme nature of the bias I study, and specifically the

non-monotonic response to information it involves. In contrast, Bohren and Hauser (2021)

study a wide range of biases, and find in all cases that consensus5 is necessarily achieved with

sufficiently little misspecification.

Beyond consensus, Theorem 2 establishes that in order to achieve learning, we need a much

stronger condition than in the standard Bayesian model. In that setting, being indirectly con-

nected to ever-larger sets of agents (Expanding Observations) is necessary and sufficient for

learning with unbounded signals (Acemoglu et al., 2011), where these are signals that can leave

a Bayesian arbitrarily close to certain of the state. With motivated reasoners, we can instead

only achieve learning if agents are directly connected to such sets (Expanding Sample Sizes, a

novel condition), albeit with nonstationary signals (a category that includes unbounded and

some bounded signal structures). One intuition for this is that with motivated reasoners infor-

mation can be ‘lost,’ since these agents sometimes ‘reject’ information gleaned from observing

their neighbors’ actions. This is easier to see in deterministic, simple structures: a tractable

example is the line network, in which agents each observe only their immediate predecessor.

4The complete network involves each agent observing the actions of all predecessors.
5What I call consensus corresponds to what they call learning.
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Such a network structure guarantees learning with unbounded beliefs and Bayesian agents,

but fails with motivated agents since it does not satisfy expanding sample sizes. In my model,

expanding sample sizes is necessary for learning as upon observing any neighborhood with

only M members there is some probability that all observed neighbors rejected their social

signals, and an agent cannot achieve a level of accuracy arbitrarily close to one with such

information. This problem fades as neighborhood size expands. It is also the case that in

those settings where, in Bayesian societies without expanding sample sizes, only finitely many

agents would make the wrong decision in equilibrium, introducing an arbitrarily tiny number

of motivated reasoners, engaging in an arbitrarily tiny level of motivated reasoning, is enough

to ensure that infinitely many Bayesians instead fail to match the state. I demonstrate this

in Corollary 2.1, in which any amount of motivated reasoning can be seen to impede the fast

convergence required for such consensus.

Theorem 3 and Proposition 2 then elucidate in what precise sense more connected and

clustered social networks produce more polarization. Defining a nested neighbor of agent n as

any neighbor whose neighborhood n also certainly observes, Theorem 3 establishes that with

nonstationary signal structures, any network topology in which agents observe an ever-growing

number of nested neigbours will achieve learning, and the exact pattern of party polarization

this produces. Proposition 2 then establishes that even if agents do not asymptotically observe

infinitely many nested neighbors, the probability an agent rejects his social signal can be

made arbitrarily close to 1 by supposing that they observe enough of them. As I argue in

Section 6, nested neighborhoods may be a reasonable representation of online social networks,

particularly given the level of connectivity and clustering they exhibit, and the sequential

structure of the game. Polarization is a complex phenomenon that will result from many

factors, such as misspecification (Bohren and Hauser, 2021), selective news sharing (Bowen

et al., 2023), and echo chambers (Levy and Razin, 2019; Acemoglu et al., 2024) to name a few.

The results of this paper illustrate how motivated reasoning can exacerbate it, and especially

so in the world the internet has built.

The paper is organised as follows. After reviewing the literature in Section 2, in Section 3

I describe the set-up of the model, how motivated agents form beliefs and what information

they have. Section 4 defines the solution concept, my notions of learning and consensus, and

my partition over information structures, as well as presenting the decision rules of agents

and establishing equilibrium existence. Consensus is discussed in both Sections 5 and 6, with

Theorem 1 setting out the main implications of motivated reasoning for this, and Corollary 2.1

demonstrating the fragility of consensus in Bayesian societies without expanding sample sizes.

My main result on learning is Theorem 2, in Section 6, on the role of expanding sample sizes.

This section also contains a simple example illustrating the problems motivated reasoners
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present for learning, and presents a sufficient condition for learning with nonstationary signal

structures in Theorem 3. Discussion of extensions is contained in section 7, and section 8

concludes.

2 Literature Review

There is a large literature on sequential social learning, going back to classic articles by

Bikhchandani et al. (1992) and Banerjee (1992). These and much of the early literature are

developed by Smith and Sorensen (2000), who provide a general analysis of sequential social

learning on a complete network, in which all agents observe all those who came before, and

were the first to discover the distinction between bounded and unbounded beliefs. Following

on from this initial benchmark, there are two clear literatures developing this in two distinct

directions. The first concerns the exploration of social learning in general network topologies,

and the second investigates behavioral biases and/or misspecification.

Acemoglu et al. (2011) extend Smith and Sorensen (2000) in allowing for arbitrary social

network structures, with the caveat that agents’ neighborhoods are independent of each other.

In this setting, they find that Expanding Observations- a minimal connectivity condition- is

necessary and sufficient for asymptotic learning with unbounded beliefs.6 A small literature

following Acemoglu et al. (2011) has developed, for example containing Lobel and Sadler

(2015, 2016) and Lomys (2020). The first of these removes the neighborhood independence as-

sumption of Acemoglu et al. (2011), unlike the model I present here,7 and the second studying

learning in a setting where agents have different preferences over the two actions. This turns

out to be sufficient to break learning in general networks, and some of the learning problems

in my model are reminiscent of it. All four papers establish learning in different settings using

either an Improvement Principle or a Large Sample Principle, I further discuss these and com-

pare their uses to my setting in Section 6. Papers such as Çelen and Kariv (2004), Acemoglu

et al. (2009), Dasaratha and He (2024) and Rosenberg and Vieille (2019) consider the speed

of learning, and whether or not convergence in such general networks is almost sure or in

probability. I have notions of learning and consensus defined in both modes of convergence,

and in particular use the example of fast convergence in a line network from Rosenberg and

Vieille (2019) to establish the fragility of Bayesian correct consensus to motivated reasoning

6In addition to these articles studying general network topologies with the Acemoglu et al. (2011) frame-
work, there are of course articles such as that by Çelen and Kariv (2004) that study specific non-complete
network topologies such as the line network. I follow the Acemoglu et al. (2011) approach, as real world
networks are inevitably going to contain all sorts of arbitrary patterns, making results on general network
topologies of much more use in studying social learning.

7Note that an implication of this it that motivated reasoning can damage social learning even without type
homophily and echo chambers.
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in my Corollary 2.1. Separately, the results of Dasaratha and He (2024) concern the speed of

learning with ‘confounding’ (when agents do not observe the common neighbors of their own

neighbors, and cannot correct for the resulting correlation in observed actions) in a model with

generations of agents, and is thus related to my Proposition 2 in which I show that observing

enough nested neighbors (neighbors for which there is no such ‘confounding’, c.f. Condition 3)

guarantees a minimum probability of success. They also speak of information ‘loss’, but in a

different sense to the loss I discuss in Section 6.1: improvement reasoning still holds in their

model, so whereas my loss reflects agents performing worse than their predecessors, the loss

of Dasaratha and He (2024) concerns them improving on said neighbors very slowly.

I am by no means the first to introduce behavioral biases into social learning, though

articles pursuing this extension do so largely on the complete network (Bohren, 2016; Bohren

and Hauser, 2021; Eyster and Rabin, 2009; Arieli et al., 2023). This fact ensures that the

analyst can study ‘the’ social belief at period n, and analyze asymptotic learning outcomes by

characterising the properties of this stochastic process. Intuitively, it means that agents always

have access to all the social information their predecessors did, and this information cannot

be ‘lost’. As I explain in section 6.1, this possible loss of information is a major problem for

learning in more general network topologies. Beyond this, the particular bias I study is quite

different to those studied by other articles. As mentioned in the Introduction, Bohren and

Hauser (2021) alone cover an array of behavioral biases where agents also hold misspecified

beliefs over the fractions of agents with each bias, but find that without misspecification agents

always achieve consensus with unbounded beliefs (Bohren and Hauser, 2021, Theorem 6). In

contrast, agents in my model fail to achieve consensus with unbounded beliefs on the complete

network, even in the absence of misspecification. This is because for each bias they consider,

in the absence of misspecification, agents all agree which actions are optimal in each state,

regardless of their type, and respond to strong evidence that the true state is θ by choosing

that action. Conversely, my model involves a more extreme bias, with agents engaging in non-

Bayesian updating and sometimes exhibiting a non-monotonic response to social information.

In this sense it resembles other models with non-Bayesian updating in the non-sequential

literature, such as the classic DeGroot (1974), but the non-Bayesian updating rule here is far

less mechanical. Molavi et al. (2018) use an axiomatic approach to study a generalization of

DeGroot (1974), which does involve agents using Bayesian reasoning to incorporate private

information as here. However, their monotonicity axiom explicitly rules out the motivated

reasoning procedure I model.
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3 Model

An infinite sequence of agents each labelled by n ∈ N must choose one of two available

actions xn ∈ {0, 1}, and seek to match the binary state: θ ∈ {0, 1}. Their utility function is

the following:

un(xn, θ) =

1 if xn = θ,

0 if xn ̸= θ,

All agents have a common prior, and nature draws the state at the beginning of the

game according to this prior. To simplify notation, I assume that P(θ = 1) = 1
2
, though

the results generalise. Each agent receives an independent and identically distributed private

signal ςn ∼ Fθ, where (F0,F1) makes up the information structure of the game. These private

signal distributions are assumed to be absolutely continuous with respect to each other, i.e.

there are no perfectly informative signals, and informative (their Radon-Nikodym derivative is

not almost surely 1). Every private signal ςn implies a private belief pn, and the distributions

of these private signals induce private belief distributions: (G0,G1). The unconditional private

belief distribution is G = 1
2
G0 +

1
2
G1.

In addition to their private signal, each agent observes the actions of some ordered subset of

those agents before them, their neighborhood B(n), and the indexes of those agents. I.e. they

observe {xk : k ∈ B(n)}. These neighborhoods are drawn at the beginning of the game, and are

independent across n. The distribution of agent n’s neighborhood, Qn, is common knowledge.

Upon observing this social information, agents form their (motivated) social belief. For each

social signal one can define the Bayesian social belief as the probability a Bayesian would

assign to θ = 1 upon observing it (given their understanding of the behavioral behavior of

their neighbors). As in standard models, these are then combined into an overall belief, and

the order in which an agent forms social and private beliefs does not matter (Lemma 2, which

reproduces Proposition 2 from Acemoglu et al. (2011), makes this clear, by showing that the

decision of the agent depends on the sum of their private and social beliefs).

Agents can be of type 1,0 or U8, where τn denotes the type of agent n; type 1 agents

are biased towards believing that θ = 1, type 0 agents that it is θ = 0, and type U agents

are Bayesian (showing no bias either way). I assume types are independent and identically

distributed. Let the probability a given agent is Bayesian be β. For notational simplicity I

assume there is equal chance of an agent being type 0 or 1: 1
2
(1− β).9 The specific reasoning

procedure I assume for the motivated social belief is adapted from Little (2021), which provides

a tractable and elegant representation of an agent trading-off a desire for accuracy against a

8For unbiased, though I shall frequently refer to them as simply Bayesian.
9All results generalise to any distribution with non-zero measure on type 1 and type 0 agents, though the

fraction of agents choosing one action or the other asymptotically will depend on this.
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desire to believe the state of the world takes particular values.10 A type 0 agent observing a

social signal in favor of θ = 1 is an agent of non-congenial type, and similarly in reverse for

type 1 agents. For any agent, their Bayesian equivalent is a hypothetical agent with identical

information, but no bias. This agent’s hypothetical action is χn ∈ {0, 1}, and the unconditional

probability with which it matches θ is their Bayesian accuracy : αn := P(χn = θ).

3.1 Motivated Reasoning

I represent motivated reasoning with two parameters (R, s) ∈ (1
2
, 1)× (0, 1), and illustrate

this process in Figure 1. ‘R’ denotes a threshold for ‘signal rejection,’11 and ‘s’ is a parameter

governing ‘prior-shifting.’ If agent n is of type τn = 0 (he), he rejects any Bayesian social

belief strictly greater than R and adopts motivated social belief 1
2
in its place. This (relatively

stark) assumption is easy to work with, but it should be noted that all results hold for any

belief rejection process satisfying Assumption 1:

Assumption 1. There exist ϵ > 0 and δ > 0 such that for any Bayesian social belief µ ∈
(1−ϵ, 1], a type τn = 0 agent will instead form social belief y with probability z where y ≤ 1−ϵ
and z ≥ δ. Type τn = 1 agents will act symmetrically for Bayesian social beliefs in [0, ϵ).

In other words, we simply need some strictly positive probability that agents will act

with a social belief bounded away from 1 or 0. Our agents do not reject Bayesian social

beliefs below R, but instead form a motivated social belief by updating an adjusted prior

(1− s)× 1
2
+ s× (0) = 1

2
(1− s) that places weight s on their type and 1− s on the true prior.

Conversely, an agent of type τn = 1 (she) rejects Bayesian social beliefs below 1 − R, and

interprets other social signals according to the prior (1−s)× 1
2
+s× (1) = 1

2
(1+s). Notice the

asymmetry here: private beliefs are still processed in a Bayesian fashion with the correct prior

of 1
2
: agents always form exactly the same private beliefs a Bayesian would, whatever their

type. I model belief formation in this way to reflect experimental evidence that people are

distinctly irrational when asked to process social information (Conlon et al., 2022; Oprea and

10There are various models of Motivated Reasoning in the literature, notable alternatives are studied by
Bénabou (2015), but Little’s has the advantages of using a straightforward alteration of Bayesian reasoning,
and thus great tractability.

11Epley and Gilovich (2016) cite the example of an admirer of the actor Jimmy Stewart who would refuse to
read profiles of him if ever she glimpsed negative keywords such as ‘womanizer’ and ‘FBI informant’, instead
slapping the magazine shut. My agents can be thought of as behaving similarly, logging into their social media
accounts and scanning to see roughly what their friends are saying on a given topic, before logging off quickly
and suppressing the memory if it looks like bad news. Rejection in this model is also similar to information
avoidance and forgetting in other models of motivated reasoning, Bénabou (2015) presents a number of models
in which agents can forget unpleasant signals, and the experimental literature provides evidence both for
information avoidance (Oster et al., 2013; Ganguly and Tasoff, 2017) and forgetting (Zimmermann, 2020;
Saucet and Villeval, 2019)
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Yuksel, 2022; Weizsäcker, 2010; Conlon et al., 2021).12,13,14 Moreover, the processing of social

signals here involves a severe discontinuity at R and 1−R for τn = 0 and τn = 1 type agents

respectively. An extension considered in Section 7 smooths out this discontinuity, without

changing any results, as can be done with any rejection procedure satisfying Assumption 1.

1
2

Prior: 1
2
(1 − s)

1
20 R 1

Figure 1: A τn = 0 agent forms a motivated social belief. If the social belief a Bayesian would
form is in the red region, they adopt a motivated social belief of 1

2
. Otherwise, the form the

belief a Bayesian would form, if said Bayesian had prior belief 1
2
(1− s).

4 Equilibrium Strategies and Outcomes

A convenient representation of each agent’s decision making procedure is outlined in

Lemma 1. This reasoning procedure of course involves a non-monotonic response to social

information: an agent will increase their belief in response to stronger evidence up to a point,

before snapping and discounting this information entirely.15 Given the above and a convenient

manipulation of Bayes’ Rule, each agent’s motivated decision rule can be represented as in

the following lemma:

12Motivated Reasoning can be considered as consisting of two distinct parts: (1) evidence recruitment and
(2) evaluation. Epley and Gilovich (2016) note this distinction in particular. Given the structure of this model
(where evidence is not specifically recruited, but simply observed), I focus on the latter.

13Appendix F.2 considers an alternative model in which agents process all information in a motivated
fashion, finding substantially similar results.

14One oddity of this specification occurs with a sufficiently extreme s parameter, and Bayesian social belief
just above R (taking type τn = 0 agents without loss of generality). In this case, it is possible that whilst
rejecting the social signal produces motivated social belief 1

2 , accepting it and processing it with the biased
prior will produce a preferable motivated social belief below 1

2 . Since belief rejection represents the most
extreme psychological defense measure, this is odd. However, if instead we suppose that agents reject social
signals beyond R = max{R, 1

2 (1 + s)}, this is no longer the case. All of the results I prove for this model also

hold if we assume agents use R as their rejection threshold. For simplicity I will not incorporate R in my
analysis, but one could without any important change.

15This can be extended to a less abrupt procedure, as discussed in Section 7.
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Lemma 1. Consider an agent, n, who forms (motivated) social belief ‘SB’. They will

choose xn = 1 if the following condition is satisfied:

SB + Pς(θ = 1|ςn) ≥ 1

If agent n is a Bayesian (τn = B), they form SB = Pς(θ = 1|B(n)). If they are type 0

(τn = 0), they form SB according to:

SB =


(1−s)Pς(θ=1|B(n))

(1+s)−2sPσ(θ=1|B(n))
if Pς(θ = 1|B(n)) ≤ R

1
2

otherwise

Finally, if they are type 1 (τn = 1), SB is formed according to:

SB =


(1+s)Pς(θ=1|B(n))(

2sPς(θ=1|B(n))+(1−s)

) if Pς(θ = 1|B(n)) ≥ (1−R)

1
2

otherwise

Otherwise they will choose xn = 0.

Proof. See Appendix B.

Having defined the belief formation process, the solution concept I use is Perfect Bayesian

Equilibrium, except of course that the agents do not use Bayes’ Rule to form their beliefs, but

rather the relevant motivated distortion of it.

Definition 1. (Motivated Equilibrium) A strategy profile ς is a Motivated Equilibrium if:

(i) Sequential Rationality: Every agent’s strategy is an optimal response to their belief given

the strategies of other agents ς−n.

(ii) (In)consistency: Agents’ beliefs are updated according to the Motivated Reasoning Proce-

dure outlined above, applying Bayes’ Rule with the distortion implied by their type, and

(R, s).

Denote the set of all equilibria as Σ, with typical member ς.

With this definition, equilibrium existence is immediate, as is standard in models of se-

quential social learning:

Proposition 1. A Motivated Equilibrium exists.

Proof. The Motivated Reasoning procedure always uniquely defines a belief for every history
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and private signal (ςn, hn). The set of optimal actions is non-empty for every belief (and is

not a function of the strategies of other agents except through this belief), thus recursively

applying these facts gives equilibrium existence.

We are interested in whether or not agents ever reach consensus, and whether this con-

sensus is correct. Failing this, it is of particular interest whether Bayesian agents make the

correct decision asymptotically, as this reflects the extent to which the presence of motivated

agents damages information aggregation within a given network. I define these two outcomes

formally as follows, with complete Bayesian learning and consensus. The most extreme form

of polarization would involve all motivated reasoners choosing their own type, and I call this

tribalism. Tribalism and consensus are mutually exclusive by definition. For each of these three

outcomes, one can speak about the outcome occurring within the whole population N or some

subset of it S. As I discuss in Section 6, this allows me to explain a larger variety of patterns

of polarization.

Definition 2. (Learning, Consensus & Tribalism) Complete Bayesian learning obtains

if χn converges to θ in probability (according to measure Pς) in all equilibria ς ∈ Σ, i.e.

limn→∞ αn = 1 ∀θ. We say that Almost-sure Bayesian learning obtains if this converges

almost surely. Consenus obtains if xn converges to ω for any ω ∈ {0, 1} almost surely in all

equilibria ς ∈ Σ, i.e. Pς(limn→∞ xn = ω) = 1. Beyond this, Correct Consenus obtains if xn

converges to θ almost surely in all equilibria ς ∈ Σ, i.e. Pς(limn→∞ xn = ω) = 1 ∀θ. Tribalism
obtains if, for motivated reasoners, xn converges to τn almost surely in all equilibria ς ∈ Σ,

i.e. Pς(limn→∞ xn = τn) = 1 ∀τn ∈ {0, 1}. Tribalism does not restrict the asymptotic actions

of Bayesians. Any of these outcomes occurs within subset S ⊆ N if the limit probability of

agents within S converges to 1.

I shall sometimes have cause to refer to tribalism and consensus in probability, which

simply switches the notion of convergence in these definitions, though it is primarily the

almost-sure notions above that will be of interest. Almost-sure Bayesian learning of course

implies consensus on the true state when no motivated reasoning is present, and complete

Bayesian learning analogously would imply consensus in probability.

4.1 Categorizing Information Structures

Generally, an information structure is said to be bounded if the support of the private

beliefs it can induce is [B,B] where B > 0 and B < 1; for example, normally distributed signals

are unbounded, but finite signal structures are all bounded. This is usually an important

distinction, and only with unbounded beliefs are there no Bayesian social beliefs for which,

should they hold the motivated social belief that corresponds to it, an agent’s action carries
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no information at all about their private signal. Here however, motivated reasoning reduces

the pertinence of this distinction. To supplement it, I divide information structures between

those that are nonstationary and those that are stationary. Let ψ(λ, θ) denote the probability

that an agent n of unknown type chooses xn = 1 if they observe a social signal producing

Bayesian social belief λ and the state of the world is θ. In order to define this partition, I first

define the notions of cascade and stationary beliefs:

Definition 3 (Cascade and Stationary Beliefs). A Bayesian social belief λ is a cascade belief

for type τ , if an agent of type τ with Bayesian social belief λ takes the same action xn = x

for any private signal. λ is a stationary belief if it is a cascade belief for every type, implying

that ψ(λ, 0) = ψ(λ, 1) ∈ {0, 1}.
Suppose a Bayesian agent observes a single neighbor, n − 1, of unknown type. An agent

cannot precisely know the Bayesian social belief of their neighbor without observing their

neighborhood, but suppose for the sake of this definition that we simply tell them this value.

If λ is a nonstationary belief, they will form a social belief strictly above λ if xn−1 = 1 and

strictly below λ if xn−1 = 0. If instead λ is stationary, their action communicates no new

information and our agent will adopt λ as their own Bayesian social belief, since it reflects

all social information observed by the neighbor. Stationary beliefs are those that cannot be

rejected or overturned by any private signal, whatever the type of the agent. Nonstationary

beliefs are those that can be, for at least one type of agent. Armed with these definitions, we

can define our partition:

Definition 4 (Nonstationary & Stationary Signal Structures). A signal structure (F0,F1) is

nonstationary for a given parameter tuple (R, s, β), if the set of stationary beliefs is empty.

Otherwise, it is stationary for (R, s, β).

In the standard Bayesian model, this definition of nonstationary information structures is

equivalent to the definition of unbounded signals, and unbounded signal structures are neces-

sarily nonstationary here. Bounded signal structures may be either stationary or nonstationary

however, and this fact is illustrated by Figure 2 and the following discussion.

Let us consider a bounded signal structure. The presence of prior-shifting first expands the

region of Bayesian social beliefs that can be overturned (the orange region in Figure 2b for

example), since type 0 agents will form motivated social beliefs more in favor of θ = 0, and

type 1 agents in favor of θ = 1. The region of social beliefs which are not cascade beliefs for

Bayesians is [1−B, 1−B]. Let us define [1− b0, 1− b0] and [1− b1, 1− b1] analogously for the

motivated types. To compute these values, we set SB+Pς(θ = 1|ςn) = 1 in Lemma 1, substitute

B or B for the private belief, and use the first case of the piecewise function defining SB.

As we increase s, the interval of over-turnable beliefs for each motivated type moves towards

the extreme corresponding to their type. In Figure 2b the region of over-turnable Bayesian
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social beliefs grows from [1−B,B] to [1− b1, 1− b0]. Secondly, signal rejection entails that for

Bayesian social beliefs in the regions [0, 1 − R) and (R, 1], the agent will choose each action

with strictly positive probability. This follows from the fact that if they are of non-congenial

type they will simply reject this belief entirely. As we increase the maximum signal strength of

our private signal B or reduce the threshold for signal rejection R, we will eventually ensure

that these two regions meet. Given this, for any parameters (R, s), sufficiently informative

bounded signals instead behave like unbounded signals. Increasing s alone can also turn a

stationary signal structure into a nonstationary one, though for some values of {B,B,R} it

will not, as I discuss next.

Focusing our attention on stationary signal structures, there are two important properties

that they can exhibit: they can be conducive to tribalism, conducive to consensus, or both.

Definition 5 (Conducive Signal Structures). A signal structure (F0,F1) is conducive to con-

sensus for a given parameter tuple (R, s, β) if there is a non-empty set of stationary social

beliefs for which agents of all types choose the same action with probability 1. It is conducive

to tribalism if there are stationary beliefs for which motivated reasoners of each type match

their action to their type with probability 1.

Increasing the extent of motivated reasoning (by increasing s or decreasing R), and in-

creasing access to information (the support of the private beliefs) will eventually ensure that

the signal structure is not conducive to consensus, and beyond that nonstationary. The condi-

tions that make a signal structure conducive to tribalism are more counterintuitive: increasing

motivated reasoning via s helps to make a signal structure conducive to tribalism (since it

pushes the interval of over-turnable beliefs for each motivated type away from the center), but

increasing it by decreasing R does not achieve this. Decreasing R works against both tribalism

and consensus. The same holds for increasing the support of private beliefs: both consensus

and tribalism are eventually rendered impossible as we expand [B,B].

5 Consensus with Motivated Reasoning

First and foremost, it can be easily seen that complete Bayesian learning and consensus are

incompatible with this model of motivated reasoning. The former implies extreme Bayesian

social beliefs, which are necessarily rejected by agents of non-congenial type. This in turn gives

that nonstationary beliefs preclude learning, as either complete Bayesian learning obtains, or

all Bayesian social beliefs can be overturned with positive probability asymptotically. In either

case, clearly no action commands unanimity. This is not to imply that consensus is impossible,

however, and the third part of this theorem observes that with stationary beliefs there are

some network topologies and parameter values that do produce it (the complete network can
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0 1 − R1 − b1 1 − B
1
2 1 − B 1 − b0R 1

(a) Nonstationary Signal Structure

0 1 − R 1 − b1 1 − B
1
2 1 − B 1 − b0 R 1

(b) Conducive to Consensus but not Tribalism

0 1 − R

1 − b1

1 − B
1
2 1 − B

1 − b0

R 1

1 − b1 1 − b0

(c) Conducive to Tribalism but not Consensus

0 1 − R

1 − b11 − b1

1 − B
1
2 1 − B

1 − b01 − b0

R 1

(d) Conducive to Both

Figure 2: Nonstationary vs Stationary and Conducive to Tribalism/Consensus : Any Bayesian
social belief in the red region may be rejected by a non-congenial motivated reasoner, and
any in the orange region can be overturned. Bayesian social beliefs in neither are stationary
beliefs, and it is the absence of these that defines nonstationary information structures. The
final three panels all exhibit stationary information structures, and the first is nonstationary.
In panel 2b, agents will all take action 0 in the left region of stationary beliefs, and 1 in
the right. In panel 2c motivated agents will choose their own type in the stationary regions;
Bayesians will choose 0 on the left and 1 on the right. In panel 2d Bayesians will choose 0 for
all stationary beliefs on the left, and 1 for all stationary beliefs on the right. In the two inner
regions of stationary beliefs motivated agents will choose their own type, in the outer regions
we will have consensus. On the left this consensus will be on xn = 0, and on the right it will
be on xn = 1.
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provide such a case).

Theorem 1.

(i) Complete Bayesian learning implies that neither consensus nor tribalism obtain.

(ii) Thus consensus and tribalism cannot obtain with nonstationary beliefs.

(iii) Consensus and tribalism can occur with stationary signal structures. There exists at least

a network topology and stationary signal structure that produce consensus, and the same

is true for tribalism.

Proof. Let θ = 0,

(i) Complete Bayesian Learning implies the Bayesian social belief converges to (probability)

1, which implies agents of type τn = 1 are rejecting their social signals, and instead using

P(θ = 1|ςn) > 1
2
.

(ii) With nonstationary beliefs therefore, one of two things happens. The Bayesian social

belief may not converge to certainty, in which case all agents’ Bayesian social beliefs

can either be overturned or rejected. Otherwise it does, and we have complete Bayesian

learning: then Part (i) implies we do not have consensus.

(iii) This can be seen by taking the example of the complete network (which is particularly

convenient, since it allows the almost direct application of Smith and Sorensen (2000)),

with bounded beliefs: Figure 2b illustrates the set of all possible Bayesian social beliefs

if we have an information structure conducive to consensus but not tribalism. A com-

plete proof with details is relegated to Appendix B, but the intuition is as follows. The

assumption of bounded beliefs implies that there is a minimum Bayesian social belief

that can possibly be overturned by a private signal for each type (1− b1 < B < 1− b0),

and similarly maximum Bayesian social beliefs that can be overturned by a weak signal

(b1 < B, b0). The exact levels of these are given by the type-parameters, and implied by

proposition 1. Thus if the Bayesian social belief is below 1 − b1 or above b0, all future

actions become completely uninformative (as they do not reflect private signals) unless

the Bayesian social belief is low (high) enough to be below 1 − R (above R). If R is

picked to be high enough, however, this will be impossible. The Bayesian social belief

will then get stuck in the set [1 − R, 1 − b1] ∪ [b0, R], and learning will stop with all

agents choosing the same action. Taking an information structure conducive to tribalism

(i.e. the signal structures in Figure 2c or Figure 2d), the same argument establishes that

tribalism obtains.
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Whereas stationary signal structures maintain the possibility of consensus, the level of po-

larization in networks exhibiting expanding nested samples with a nonstationary information

structure sizes can be pinned-down exactly: if the true state is θ = 1 agents will choose xn = 1

with asymptotic probability β + 1
2
(1− β)(2−G1(

1
2
)).

For fixed (R, s), increasing the availability of information (assuming this translates to an

increase in the most informative available signal B) could create a discontinuous jump in

polarization if it engenders a shift from a stationary to a nonstationary information structure,

or indeed from a stationary signal structure conducive to only consensus, to one conducive

to tribalism. Hence a sudden and marked increase in polarization is unsurprising with the

expansion of the internet over the past 20 years: once a tipping point has been reached the

character of the information environment changes completely. Secondly, if one accepts that

in democratic societies it is not plausible (or at all desirable more generally!) to restrict

the accessibility of information to the citizenry, it follows that one could only recover the

‘stationary’ information structure in managing to increase the R parameter (or its distribution

as in the aforementioned extension) above its original value enough to compensate for the

increased availability of information. This fits well with the findings of Guilbeault et al. (2018),

who show experimentally that increasing the salience of partisanship produces motivated

reasoning: in the context of this model increasing the salience of partisanship would simply

correspond to decreasing and increasing the values of R and s respectively.16

If we begin with an environment that permits and is producing consensus, expanding

the support of private beliefs and the level of motivated reasoning will eventually produce a

nonstationary signal structure. Depending on the relative rates as which s, R and [B,B] are

changing, the signal structure may become conducive to tribalism en route. If an information

structure is stationary for s = 0, there is some value of s that will make this structure conducive

to tribalism.

Beyond what we have seen in Theorem 1, the forthcoming results on learning have further

implications on consensus and the circumstances in which we should expect it. Corollary 2.1,

a corollary to the main theorem of this section, Theorem 2, establishes that correct consensus

in a purely Bayesian society is fragile to the introduction of any non-zero probability β of

motivated reasoning. With enough nested neighbors (c.f. Condition 3), I also show that one

can ensure that non-congenial agents reject social signals with arbitrarily high probability,

whilst congenial type agents form arbitrarily strong beliefs in favor of the true state.

16They note that increasing the salience of partisanship reduces social learning, though social learning
as defined in their setting corresponds to consensus here; clearly the observed action/ stated belief in an
experimental setting corresponds to xn, not χn.
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6 Learning and the absence of Sparse Correct Consen-

sus

In searching for sufficient conditions for complete Bayesian learning, we might first guess

that expanding observations (originally from Acemoglu et al. (2011), set out below in Condi-

tion 1) might be enough.

Condition 1 (Expanding Observations). A network topology Q satisfies expanding observa-

tions if for all K ∈ N, limn→∞Qn(maxb∈B(n) b < K) = 0

Expanding observations is certainly a necessary condition for learning, since if it fails there

is some finite K such that infinitely many agents’ decisions are based on at most K private

signals, but is no longer sufficient in this setting. This insufficiency follows from Theorem 2,

which establishes that a much stronger (and novel) condition ‘Expanding Sample Sizes ’ is nec-

essary for complete Bayesian learning to obtain. Notice that this condition implies expanding

observations.

Condition 2 (Expanding Sample Sizes). A network topology has expanding sample sizes if

for all K ∈ N, we have

lim
n→∞

Qn

(
|B(n)| < K

)
= 0

If the network topology does not satisfy this property, it has non-expanding sample sizes. If for

some subset S ⊆ N we have limn→∞Qn(|B(n)∩S| < K) = 0, then we have expanding sample

sizes for S.

This condition is of course weaker than requiring a network topology to be complete, but

it is still very strong, since it requires that agents eventually observe arbitrarily large neigh-

borhoods with very high probability. Whereas expanding observations ensures that agents

indirectly observe an ever-increasing number of neighbors, expanding sample sizes requires

that they do so directly. This condition, as I now establish in Theorem 2, is necessary for com-

plete Bayesian learning. Beyond this, as I then demonstrate in Corollary 2.1, in its absence17

consensus is impossible with a nonstationary signal structure, unlike in the purely Bayesian

model.

Theorem 2. Complete Bayesian learning obtains only if the network topology satisfies ex-

panding sample sizes.

Proof. See Appendix B.

17It is this absence that I reference with ‘sparse’, though networks can in truth be extremely densely
connected without satisfying expanding sample sizes.
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The proof is relegated to the appendix (and an alternative proof by contradiction provided

in Appendix D), but the rough intuition behind it is as follows. Any neighbor is either acting

on the basis of a weak Bayesian social belief, and is thus not very informative to observe, or

a very strong one, in which case they will be rejecting this belief if of non-congenial type.

For any finite neighborhood, the probability that all neighbors happen to be of non-congenial

type is bounded away from zero. Any Bayesian agent may therefore be acting on the basis of

an entire neighborhood of neighbors rejecting their social signals.

This intuition, that the fact of signal rejection causes information to be ‘lost’ (or possi-

bly lost), is easier to see in deterministic, simple networks. A tractable example is the line

network, in which agents each observe only their immediate predecessor. This network struc-

ture guarantees learning with unbounded beliefs and Bayesian agents, but of course fails with

motivated agents since it does not satisfy expanding sample sizes.

Note that Theorem 2 establishes that expanding sample sizes is a necessary condition for

learning for any proportion of Bayesians β ∈ (0, 1). In so far as we care about whether or not

complete Bayesian learning obtains in a given network topology therefore, this provides a sense

in which the traditional Bayesian model is fragile. Any small fraction of motivated reasoners

is sufficient to move from a model in which even the line network suffices for learning, to one

in which agents instead need arbitrarily large neighborhoods. However, this fragility is only in

terms of the exact achievement of complete learning, and does not say that a very small β/very

large R must produce a large drop in asymptotic accuracy. Given that our main concern in this

paper is with consensus however, it is more important that we do find a substantial fragility

with this outcome as set out in Corollary 2.1.

Corollary 2.1. There exist network topologies and signal structures that produce correct con-

sensus when β = 1, but fail to when β = 1− ϵ for any ϵ > 0. Hence, in some cases introducing

an arbitrarily small probability of motivated reasoning switches an equilibrium in which only

finitely many Bayesian agents fail to match the state for one in which infinitely many of them

do, almost surely in each case.

Proof. See Appendix B

In games that would produce almost sure learning in the Bayesian model therefore, and in

which all agents will match the state after some finite time, an arbitrarily tiny proportion of

motivated reasoners engaging in an arbitrarily small amount of motivated reasoning (R ≈ 1,

perhaps reverting to 1− ϵ or ϵ as per Appendix F.1) is enough to thwart almost sure learning

whenever we do not have expanding sample sizes, and ensure infinitely many Bayesians (and

by extension, agents of any type) fail to match the state where only finitely many would do
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so in the Bayesian model. A line network with sufficiently informative beliefs18 is an example

of such a setting, and it is in such high information, sparse network settings in which the

introduction of motivated reasoning will cause such problems. Though Theorem 1 establishes

that in the complete network, the densest possible, motivated reasoning will eventually kill

consensus as we introduce more and more information. It is also interesting to note that

motivated reasoning breaks the equivalence between the line and complete networks that

Rosenberg and Vieille (2019) find holds with sufficiently informative private signals. In their

purely Bayesian setting, the outcome is the same in both (‘efficiency’- which is stronger than

almost sure learning) whereas here there is still almost sure learning in the complete network,

but not in the line network.

6.1 Information Loss & Uninformative Actions

Whether motivated reasoning helps or harms information aggregation, measured by the

attainment of complete Bayesian learning, varies according to the network topology. Two ex-

treme deterministic cases demonstrate this. The line network shows how motivated reasoning

can cause the loss of information, and the complete network shows how it can ensure informa-

tion continues to accumulate. Signal rejection, specifically when applied to the social belief,

can engender the repeated loss of all accumulated information. Learning results derived using

improvement principles are thus inapplicable, as the neighbor upon whom a given agent is

improving may be acting on the basis of only his own private information. In the line network

this problem is at its most extreme: there will be infinitely many signal rejections, and agents

will never be sure exactly how many agents back the last rejection was. I work through a

simple line network example in Appendix C, but its conclusions are captured by Figure 3, in

which I plot the case with R = 0.7 in blue and R = 0.9 in orange. The black function in Figure

3a gives the Bayesian accuracy of an agent (he) as a function of the Bayesian accuracy of his

neighbor (she). Upon observing his neighbor, if her Bayesian accuracy is sufficiently high, our

agent must account for the fact that she will be rejecting her social signal if of non-congenial

type, hence the discontinuity. That this black function never reaches a value of 1 reflects the

fact that our agent can never achieve this level of accuracy, however accurate his neighbor.

Plotting αn against n in Figure 3b, we can see that the Bayesian accuracy of agents never

approaches 1 in either case. Incidentally, that it need not converge at all19 (e.g. as is the case

for R = 0.9) provides another point of distinction from the Bayesian model, where for a very

18I refer to a condition in Rosenberg and Vieille (2019) here, see the proof for details.
19If α∗

R is above the intersection of the black function with the 45° line in figure 3a, the accuracy of agents
repeatedly climbs up this curve only to drop back down below α∗

R when some agent exceeds it. This produces
the sawtooth patten for R = 0.9 in figure 3b. Otherwise, the process keeps climbing after reaching the second
section of the black curve, converging to its fixed point as with R = 0.7.
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general class of network topologies (including the line network) it is known that Bayesian

accuracy must converge (Kartik et al., 2022).

α

Observer

Observee

(0.5, 0.5) 1

1

H(0.5)

α∗
0.7 α∗

0.9

(a) Observer accuracy against observee
accuracy in a line network

(b) αn against n

Figure 3: R ∈ {0.7, 0.9}, s = 0, β = 0, (f0, f1) = (2(1− ς), 2ς)

In the standard Bayesian model, the assumption of non-empty neighborhoods and ex-

panding observations are sufficient to ensure that as n → ∞ more and more information is

continually introduced, whilst agents have indirect access to the signals of all agents in the

chain before them; the depth of each agent’s ‘information path’ converges to infinity. With

motivated agents, however, periodic signal rejection ensures that the actions of agents before

a given signal rejection occurs are completely independent of those after. Thus even with ex-

panding observations, an agent only ever (in a line network) observes a social signal reflecting

a finite number of signals.

This breakdown in information monotonicity is reminiscent of that seen in Lobel and

Sadler (2016), where agents have heterogeneous preferences over the two actions. However, it

is even worse in the present model, as in their paper one would at least be able to extract

the information of an observed agent upon learning their type (and due to this they can

achieve learning with homophily in their Proposition 3). In this model, however, knowing the

type of a neighbor does not fully fix the issue. If you observe the type of your most accurate

neighbor, and also observe (by observing their neighborhood) that they are of congenial type,

this tells you that xn is highly likely to be equal to χn (I say only ‘highly’ likely since prior-

shifting can still produce a difference even in the absence of signal rejection). However, if

they are of non-congenial type, their decision may in no way reflect their social information,

and evening knowing that they are of non-congenial type does not allow you to recover that

information. To salvage an improvement principle, we would need to impose that agents were

always of congenial type, which is of course inconsistent with the independence of type and
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neighborhood.

On the other hand, in the complete network, agents do not depend on their immediate pre-

decessors to learn about the history of the game. The only value in observing one’s immediate

predecessor is in the fact that observing their action communicates information about that

agent’s private signal. If all agents are Bayesian and beliefs are bounded, as is well known,

complete Bayesian learning will not obtain. With motivated reasoners however, if the (R, s)

parameters are sufficient to produce a nonstationary information structure, the action of each

individual in a complete network necessarily communicates information about their private

signal. As I set out in Lemma 4, this ensures that complete Bayesian learning obtains in the

complete network.

When agents depend upon a small number of observations to learn about the entire history

of the game, information loss will prevent learning. When all agents eventually arrive at

Bayesian cascade beliefs and take uninformative actions in the Bayesian model, motivated

reasoning can rescue learning by making the signal structure nonstationary.

6.2 Sufficient Conditions for Learning

Theorem 2 establishes that learning obtains only under highly connected and large net-

works. Though the complete network is the most obvious example of a network topology that

satisfies expanding sample sizes, it is not the only one under which we can achieve learning

in this setting. One sufficient (though not necessary, as is demonstrated by Example 1 in

Appendix D) condition for learning within any (infinite) subset S of agents is that it satisfies

expanding nested samples :

Condition 3 (Expanding Nested Samples). For agent n, let Bn(n) ⊆ B(n) be the set {m ∈
B(n) : Q

(
B(m) ⊂ B(n)

)
= 1}. A network topology has expanding nested samples for S if for

all K ∈ N, we have limn→∞Qn(|Bn(n) ∩ S| < K) = 0.

In words, agentm (he) is a nested neighbor of n (she) if she observes both his action and the

actions of his entire neighborhood, and does so with probability 1. Expanding nested samples

then requires that agents observe ever greater numbers of such agents. Clearly a network

topology that satisfies expanding nested samples also satisfies expanding sample sizes, but

two examples illustrate that the reverse does not hold: i.e. that expanding nested samples is a

stronger condition than expanding sample sizes. Firstly, if we consider the network topology

defined by each agent observing the ⌈ln(n)⌉ agents before him, we have an example of a

deterministic network topology that satisfies expanding sample sizes but not expanding nested

samples, since whilst |B(n)| converges to infinity, agents have at most 1 nested neighbor, and

most commonly none. Secondly, amongst stochastic networks, consider a network topology in
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which each agent observes with equal probability either all of their even predecessors or all of

their odd ones (with agent 2 certainly observing agent 1). In such a network, no agent n > 2

observes any nested neighbors, since for any m < n we have Q
(
B(m) ⊂ B(n)

)
= 0.5 ̸= 1.

Though a very demanding condition on the network topology, the requirement that agents

observe a large number of nested neighbors is arguably not so unreasonable when studying

social networks.20 With the advent of social media, they are increasingly connected, and also

display large amounts of clustering- where agents are disproportionately likely to be connected

to any agents their friends are connected to. Since the neighborhood of agent n represents the

set of agents n is connected to who act before them in the game, and social media provides

a public record of all friends’ comments, it is not necessarily unreasonable to suppose that

agents at least observe some nested neighbors.

Theorem 3. If a network topology has expanding nested samples for S, and the information

structure is nonstationary, complete Bayesian learning obtains within S.

Proof. See Appendix B

One implication of this is that any network topology that satisfies expanding nested sam-

ples for N exhibits complete Bayesian learning. This re-proves complete Bayesian learning

for the complete network, but also extends it to other nested topologies. For example, if all

agents observe B(n) = {m ∈ N : m < n}∩
{
{1, 100}∪{i× 100+50, ..., i× 100+99,∀i ∈ N}

}
then the network topology satisfies expanding nested samples. When establishing that com-

plete Bayesian learning obtains within proper subsets of N, we can demonstrate that even

network topologies that do not satisfy expanding sample sizes can nonetheless achieve similar

outcomes. Specifically, we can see networks in which the asymptotic fraction of agents who

correctly match the state with probability greater than 1 − ϵ for any ϵ > 0 is one. Take, for

example, the network topology in which all agents in the set S ′ = {10m : m ∈ N∪{0}} observe

only their immediate predecessor in S ′, and any agent n ∈ N\S ′ has B(n) ⊇ S ′∩{1, ..., n−1}.
This network topology satisfies expanding nested samples for N \ S ′, since the set S ′ has in-

finitely many members, and the neighborhood of every agent within S ′ is contained within S ′

(apart from the very first agent). When discussing polarization in politics, it is normally the

overall fraction of agents taking the incorrect action that is of concern. Thus, even network

topologies that do not achieve complete Bayesian learning or consensus may nonetheless re-

sult in similar levels of polarization as those that do if a sufficiently large subset of agents

achieve these outcomes. Had I instead defined S ′ = {3m : m ∈ N} ∪ {1}, then learning in the

group N \ S ′ would no longer pin down the exact asymptotic fraction of consensus as that

20Note that this assumption is not strong enough to allow the use of standard martingale convergence
arguments (as in Smith and Sorensen (2000); Goeree et al. (2006) and others). Instead I argue that one can
define a specific Bernoulli trial such that observing M neighbors is at least as good as observing M copies of
said trial. Since this M converges to infinity, we can then appeal to the Law of Large Numbers for the result.
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achieved by complete Bayesian learning, but it would still explain a large proportion of the

polarization that resulted, as two thirds of all agents are within a set that satisfies expanding

nested samples. This set S ′ resembles the notion of a Royal Family in Bala and Goyal (1998),

where this is a small21 set of agents who are observed by all other agents. In their model, in

which all agents are Bayesians, the presence of a royal family can prevent learning. Here it is

permitting learning within N\S ′, but preventing consensus. In reality, this royal family might

represent a population of influencers.

As I discussed earlier, motivated reasoning can help learning in the complete network when

the signal structure is bounded. The same holds for any network topology involving expanding

nested samples, the above example in which a subpopulation satisfies this condition, and also

in Example 1 in Appendix D. This establishes that though expanding nested samples for S is

a sufficient condition for complete Bayesian learning within S, it is not a necessary condition.

It also illustrates that motivated reasoning can help by reintroducing a certain amount of

independence between agents’ actions, roughly speaking.

These sufficient conditions are more powerful when considered in the context of the exten-

sions considered in Section 7, since the assumption of nonstationary information structures

becomes less demanding. In one of these, agents do not all have the same (R, s) parameters,

but have these independently drawn for them from some distribution. In such a setting, all

that is required for a signal structure to be nonstationary is for each agent to have a suffi-

ciently low R with some non-zero probability. Thus whilst unbounded beliefs might itself seem

a relatively strong assumption, here what matters is only that we have a sufficiently informa-

tive (possibly bounded) signal given the rejection thresholds of those agents in the population

most prone to rejecting social information. Whereas this assumption of unbounded beliefs is

essential for many results in the Bayesian model (most notably Acemoglu et al’s sufficiency

of expanding observations for complete learning), here the unbounded-bounded distinction is

much less important.

Even if we are not quite willing to suppose that a network topology satisfies expanding

nested samples, we can nonetheless show that non-congenial type agents will reject their

social signals with probability 1 − ϵ for arbitrary ϵ > 0 if they have neighborhoods with at

least M nested neighbors22 for some sufficiently large M . This is the main mechanism behind

polarization, and produces the sharp difference in stated beliefs between different political

factions. As discussed in Section 6, high clustering and connectivity of online social networks

gives cause to hope that this may hold. Condition 4 mirrors Condition 3, except that nested

neighbor samples need not explode to infinity.

21In Bala and Goyal (1998) this can be small as in finite and small, here it is small in a proportional sense.
22neighbors whose neighborhoods they also certainly observe.
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Condition 4 (M -Nested neighbor Samples). For agent n, let Bn(n) ⊆ B(n) be the set of n’s

nested neighbors. A network topology has M-nested neighbor samples for S if we have

lim
n→∞

Qn

(
|Bn(n) ∩ S| < M

)
= 0

Proposition 2. For any ϵ > 0, there is an M ∈ N such that, if agents within set S have

M-nested neighbor samples and the information structure is nonstationary, then if sbn is the

Bayesian social belief of n,

lim inf
n∈S∩N

Pς(sbn > R|θ = 1) ≥ 1− ϵ

lim inf
n∈S∩N

Pς(sbn < 1−R|θ = 0) ≥ 1− ϵ

asymptotically agents of non-congenial type each reject their Bayesian social beliefs with prob-

ability at least 1− ϵ.

Proof. See Appendix B.

Hence whilst complete learning in this environment results from agents observing ever

more information, if instead they simply observe a lot of information, that can suffice for the

widespread social signal rejection that drives polarization. It is in this sense that increasing

the extent to which a social network is ‘connected’ and highly clustered can increase polar-

ization. If for a given network topology the asymptotic distribution of Bayesian social beliefs

is not extreme enough to produce widespread social signal rejection, this can be ‘rectified’

by increasing the number of nested neighbors agents observe asymptotically. The asymptotic

probability that agents’ beliefs are in the region regions can be pushed arbitrarily close to 1

by ensuring they observe a large enough number of nested neighbors.

None of this, it should also be noted, establishes that stationary beliefs preclude learning.

Much as with Acemoglu et al. (2011, Theorem 4), network topologies with infinitely many

sacrificial lambs within a larger core can produce learning. The rise of ideological polarization

and growing access to information suggest that nonstationary information structures are most

relevant to investigating modern polarization, but I include some discussion of stationary

beliefs in Appendix E for completeness.

7 Discussion

There are a number of simple extensions to which we can easily extend the results in

this paper. As mentioned in Section 3, any rejection process that satisfies Assumption 1 will

not interfere with our results. The details of the more involved extensions are relegated to
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Appendix F. Firstly, the assumption that all agents have the same rejection threshold and

prior-shifting parameter seems unrealistic. However, the proofs of several of results in this

paper largely depend upon the existence of social belief regions in which non-congenial types

will possibly reject the Bayesian social belief. Thus the results extend to the case in which we

draw an R and s parameter individually for each agent from some distribution, so long as the

support of the R parameter includes values strictly less than 1. In other words, if the convex

hull of this support is [1−R,R], we must have R < 1. Specifically, this condition is sufficient

to reproduce the proof of Theorem 2, the reasoning within the line network example, and the

first two parts of Theorem 1. The third part requires an additional assumption, namely that

the convex hull of the support of the R distribution does not extend all the way down to 1
2
:

R > 1
2
. The definitions of nonstationary and stationary information structures (Definition 5)

still hold in this case, except that the tuple of parameters that determine if an information

structure is one or the other are now (R, s, β) instead of (R, s, β). In a similar vein, the fact that

rejection operates with a sharp threshold here creates a discontinuity that itself seems a poor

representation of real behavior, but this too can be resolved without loss. Instead, we can define

each agent as having a rejection function, giving the probability with which they reject beliefs

of a given strength. Such a function, assigning higher probabilities of rejection to more extreme

Bayesian social beliefs, could be defined to continuously increase the rejection probability for

non-congenial Bayesian social beliefs so long as it assigns strictly positive probability to the

rejection of some Bayesian social beliefs. To be precise, we can simply endow each agent with

two parameters Rmin >
1
2
, Rmax < 1 and a rejection function R : [1

2
, 1] → {0, 1} taking value

0 below Rmin, 1 above Rmax, and f(·) between where f(z) is any function from [0, 1] to [0, 1]

(though of course a strictly increasing function makes the most sense intuitively). Much as

before, Theorem 2, the line network example and the first two parts of Theorem 1 carry through

so long as agents reject some sufficiently extreme non-degenerate Bayesian social beliefs with

some strictly positive probability. There are no stationary information structures without the

condition Rmin >
1
2
, much as R > 1

2
was necessary for this in the previous extension.

A more substantial change would be to apply motivated reasoning to the entire ‘combined’

signal, instead of only the social signal. As I discuss early in the paper, I choose to model

agents as engaging in social motivated reasoning as there is some experimental evidence to

suggest that this reflects how people process information in real life. Having said that, such

experiments involve a clearly defined private signal that unambiguously carries independent

information, following a clearly defined distribution. Perhaps the signals to which agents have

access in real life are less clear, in which case it is not inconceivable that they would be

both treated equivalently. The result that expanding sample sizes is a necessary condition for

social learning will still hold in this case, but the sufficiency of expanding nested samples is
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more difficult to establish. This follows from the fact that Combined Motivated Reasoning

re-introduces a form of confounded learning, where, in a complete network for example, the

game could reach a point in which agent n is exactly as likely to choose xn = 1 in either state

of the world. Once this point has been reached in a complete network, learning stops. In more

general network topologies satisfying expanding sample sizes, it will rarely be the case that the

game can get irreversibly stuck like this (this will require specific nested network topologies),

but the same problem nonetheless prevents us bounding the minimal informativeness of any

given action. This particular extension is discussed further in Appendix F.2, but in short the

fundamental obstacles that motivated reasoning poses to learning remain.

8 Conclusion

Social learning, and under what conditions it should be expected, has been extensively

studied. Despite this, the implications of motivated reasoning on the necessary and sufficient

conditions for learning have not previously been investigated in this literature. Given the per-

tinence of motivated reasoning to learning à propos of political and ethical questions, and

the increasing interest in explaining polarization in society, this omission is in need of correc-

tion. This paper not only fills that gap, but establishes that the perfect storm of increasing

value-polarization, ever greater access to information, and the advent of more connected and

clustered social networks with social media can explain the increase in fact-polarization we

observe widely in modern life, particularly in politics.

The difficulty of learning from neighbors who reject social information they dislike strongly

ensures that much more demanding conditions on the network topology are needed: we move

from the requirement that asymptotically an agent indirectly observes infinitely many agents

(expanding observations) to that they do so directly (expanding sample sizes). Whilst learning

is thus severely obstructed by the presence of social learning, the ability of societies to settle

on consensus is not spared either. If a society can achieve consensus in one setting, it can

always be broken by increasing value-polarization or access to information. Furthermore, in

those settings in which purely Bayesian societies can achieve correct consensus, an arbitrarily

small amount of motivated reasoning suffices to kill it.

Arguably, however, this shift in network topology is descriptive of the change that the

internet has brought about. When paired with the shift from stationary to nonstationary

information structures that increased value polarization and information access can entail,

this provides an additional mechanism explaining the increased fact-polarization of modern

political discourse. The change is not all bad, as there are some network topologies that can

produce learning with bounded beliefs when a similar network of Bayesians would not. Even
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in this instance, however, motivated reasoning produces more and more polarization as agents

become more motivated to hold beliefs conducive to their ideology.

That increasing the level of information available to agents can make consensus harder

to achieve, as demonstrated most concretely in the complete network, is counterintuitive but

seems a compelling explanation of the increasing polarization we are currently observing.

The clear practical lesson for reestablishing consensus, since reducing either our access to

information or the greater density of networks are clearly not feasible (in addition to being

alarming policy objectives in general!), is that reducing the political charge of important issues

is essential. Though this is in and of itself a very tough nut to crack, it is the only clear route

my model suggests to reducing polarization with motivated agents in our ever more connected

and informationally-overwhelmed societies.

A Useful Lemmas

The first two lemmas here serve only to reproduce important results in Acemoglu et al.

(2011) that I use in the analysis in this paper. The first is Proposition 2 in their paper, and

characterises the decision rule of Bayesian agents. Lemma 3 similarly reproduces Theorem B.1

from Smith and Sorensen (2000), which is the central theorem describing the fixed points of

Markov-Martingale processes.

Lemma 2 (Acemoglu et al. (2011) Proposition 2). If they are Bayesian, agent n will

choose xn = 1 upon observing neighborhood B(n) and private signal sn if:

P
(
θ = 1|B(n)

)
+ P(θ = 1|sn) > 1

Proof. See Acemoglu et al. (2011, Proposition 2).

This next lemma is Acemoglu et al. (2011, Lemma 1), and gives several useful properties

of the belief distributions.

Lemma 3 (Acemoglu et al. (2011) Lemma 1). The private belief distributions, G0 and

G1, satisfy the following properties:

(a) For all r ∈ (0, 1), dG0(r)/dG1 = (1− r)/r

(b) For all 0 < z < r < 1, G0(r) ≥ ((1− r)/r)G1(r) + ((r − z)/2)G1(z)

(c) For all 0 < r < w < 1, 1−G1(r) ≥ (r/(1− r))(1−G0(r))+ ((w− r)/2)(1−G0(z))
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(d) The term G0(r)/G1(r) is non-increasing in r and is strictly larger than 1 for all

r ∈ (β, β)

Proof. See Acemoglu et al. (2011, Lemma 1).

Lemma 4. Suppose without loss of generality that the true state is 0. With a ‘single

rational type’ (in the context of this paper, this only reflects that all agents have the

same utility function) and ‘unbounded’ (here nonstationary suffices) beliefs, the likeli-

hood ratio, ln = (1−qn)
qn

, of the Bayesian social belief, qn, that θ = 1 of Bayesian agents

in a complete network converges to zero almost surely ln → 0.

Proof. See Smith and Sorensen (2000, Theorem 1b).

Lemma 5 (Bayesian Social Belief Distribution Relationship). If the Bayesian social

belief of agent n in state θ has PMF hnθ (·), they obey the following relation:

hn1 (SBn)(1− SBn) = hn0 (SBn)SBn

Proof. This follows almost exactly the proof of Acemoglu et al. (2011, Lemma A1 (a))- ad-

justed in necessary ways. By then definition of a Bayesian social belief, we have for any

sbn ∈ (0, 1):

P(θ = 1|SSn) = P(θ = 1|SBn)

Using Bayes’ Rule, it follows that:

SBn = Pς(θ = 1|SBn) =
Pς(SBn|θ = 1)Pς(θ = 1)∑1
j=0 Pς(SBn|θ = j)Pς(θ = j)

(*Note this differs from the analogous expression in Acemoglu et al. (2011) since there are

only a finite number of possible Bayesian social beliefs at any point.)

SBn =
Pς(SBn|θ = 1)

Pς(SBn|θ = 0) + Pς(SBn|θ = 1)

Pς(SBn|θ = 1) = [Pς(SBn|θ = 0) + Pς(SBn|θ = 1)]SBn

Using the notation that hnθ is the probability mass function for the Bayesian social beliefs of

agent n in state θ:

hn1 (SBn)(1− SBn) = hn0 (SBn)SBn
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Lemma 6. If we take a set A containing N agents, each of whom has an ex-ante success

probability of αn > 1− δ/2
N
(1−G0(R)), the ex-ante probability that their Bayesian social

beliefs are all within a rejection region is at least:

P(sbn ∈ [0, 1−R) ∪ (R, 1] ∀n ∈ A) > 1− δ

Proof. For any agent n, there are a finite number of possible social signals, and the Bayesian

social belief induced by each of them is deterministic. These beliefs can be listed in order:

{sb1n, sb2n, ..., sbEn }.

αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2
P(pn + SBn > 1|θ = 1)

2αn − 1 ≤ P(pn + SBn < 1|θ = 0)− 0

=
E∑

k=1

P(SBn = sbkn|θ = 0)[G0(1− sbkn)]

=
E∑

k=1

hn0 (sb
k
n)G0(1− sbkn)

The more mass we place on lower Bayesian social beliefs, the higher this gets. Thus any mass

placed on values above 1−R would be better placed on 1−R:. Similarly, any mass placed on

values between 1−R and the minimum Bayesian social belief sbmin
n is best placed on sbmin

n .

2αn − 1 ≤ (1−Hn
0 (1−R))G0(R) +Hn

0 (1−R)G0(1− sbmin
n )

The Bayesian social belief that maximises this is sbmin
n = 0, thus we have the upper bound:

2αn − 1 ≤ (1−Hn
0 (1−R))G0(R) +Hn

0 (1−R)G0(1− 0)

2αn − 1 ≤ (1−Hn
0 (1−R))G0(R) +Hn

0 (1−R)

This highest αn can possibly get with mass ρ on Bayesian social beliefs that are not rejected

cannot be higher than:
2αn − 1 ≤ ρG0(R) + (1− ρ)

≤ 1− ρ(1−G0(R))

Thus if we have probability ρ that agent n will observe a signal that is not in a rejection
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region, αn is (extremely loosely) bounded above by:

αn ≤ 1− ρ

2
(1−G0(R))

Thus if αn is strictly greater than this threshold, the ex ante probability that the social signal is

not in a rejection region is less than ρ. Boole’s inequality tells us that, for events {Ai}i∈{1,...,N},

P(∪N
i=1Ai) ≤

∑N
i=1 P(Ai). Thus the probability that at least one agent does not have a rejection

region signal: P(∪N
i=1(sbi not in Rejection Region) is less than or equal to

∑N
i=1 ρ. Let us call

the probability that at least one agent does not have a rejection region signal P . It follows

that P ≤ Nρ. The probability that all agents receive a rejection region signal is 1− P .

Therefore if we choose αn > 1 − ϵ/2
N
(1 − G0(R)), the probability that all agents receive

signals in the rejection region is at least 1−N( ϵ
N
) = 1− ϵ.

Lemma 7. If a set of n ∈ {1, ..., N} Bernoulli-Blackwell (in other words simple binary)

experiments all have parameters (p0n, p
1
n) such that p1n − p0n > ∆, p0n ≤ p0, and p1n ≥ p1

for all n; all dominate an informative lower bound experiment in the confidence order

of Weber (2010). This implies that they give a higher value in the decision problem of

this paper.

Proof. Consider an experiment (X = {0, 1}, 2{0,1}, pθ : θ ∈ Θ = {0, 1}), where p1 − p0 > ∆,

p0n ≤ p0, and p1n ≥ p1. The ‘confidence parameters’23 of this experiment are:

κ =
p1n
p0n

L =
1− p0n
1− p1n

One experiment dominates another in the confidence order if both its κ and L are higher,

and an experiment is informative if (κ,L) > (1, 1). For any experiment satisfying the condi-

tions of this lemma, observe that:

κ =
p1n
p0n

≥ p0n +∆

p0n
≥ 1 +

∆

p0
> 1

L =
1− p0n
1− p1n

≥ 1− p1n +∆

1− p1n
≥ 1 +

∆

1− p1n
≥ 1 +

∆

1− p1
> 1

Thus if we choose any simple binary experiment with confidence parameters
(
1 + ∆

p0
, 1 +

∆
1−p1

)
, we have an informative lower bound experiment dominated in the confidence order by

any experiment in our set of n experiments. An experiment that satisfies this is that with

23Weber uses κ and λ, but since I am already using λ elsewhere I replace it with L.
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success parameters:
(

1
2

(
1 + 1

2p0/∆+1

)
, 1
2

(
1 − 1

2p0/∆+1

))
. The value of the increment 1

2p0/∆
is

clearly strictly positive but less than 1
2
, so this is a well-defined Blackwell experiment.

Weber establishes that if one experiment A dominates experiment B in the confidence

order, A gives a higher decision value in any standard decision problem, which he describes in

section 3.1. The decision problem of this paper is clearly a standard decision problem, therefore

our lower bound experiment gives a lower decision value than any of the n experiments in our

set.

Lemma 8. If a set of n ∈ {1, ..., N} simple binary experiments all have parameters

(p0n, p
1
n) such that p1n < p1 and p0n > p0, then there exists upper bound experiment that

dominates them all in the confidence order or Weber (2010). This implies that they give

a lower value in the decision problem of this paper.

Proof. Consider an upper bound experiment with parameters (p1, p0), for this experiment we

have confidence parameters:

κ =
p1

p0
L =

1− p0

1− p1

Clearly any experiment with p1 ≤ p1 and p0 ≥ p0 will have lower (κ,L) than this upper

bound experiment, and be dominated in the confidence order. As per the equivalent reasoning

in the previous lemma, they must therefore give a lower value in the decision problem each

agent faces. What’s more, this upper bound experiment also Blackwell dominates our set of

experiments, since it has lower Type 1 and Type 2 error in both states of the world.

For Theorem 3 I need an equivalent of Blackwell’s product experiment dominance result

(Blackwell, 1951, Theorem 12), which says that if experiments E1 and E2 dominate F1 and

F2 respectively, then the product experiment E1

⊗
E2 dominates F1

⊗
F2. Since I am using

the confidence order of Weber, I cannot apply Blackwell’s Theorem 12 directly. Let us define

⪰c as the confidence order, which applies to simple binary experiments (experiments with two

states and two signals). Let us further define ⪰ as the binary relation that orders experiments

according to the decision value they achieve. Weber gives us that ⪰c=⪰ over the space of

simple binary experiments for our decision problem

Lemma 9. Suppose we have M experiments E1, ..., EM , and M experiments F1, ..., FM

31



such that Ei dominates Fi in the confidence order for each i ∈ 1, ...,M . Then the decision

value upon observing {E1, ..., EM} is at least as high as upon observing {F1, ..., FM}.

Proof. First, observe that the product experiment E1

⊗
E2 (in which E1 and E2 are inde-

pendent of each other, conditional on the state of the world) must dominate the the product

experiment E1

⊗
F2. To see this, consider the agent observing first E1 and then the sec-

ond experiment (for Bayesian updating, it does not matter in what order the agent observes

them, it is ‘divisible’ to adopt Cripps (2018) terminology). Whatever posterior they form

upon observing E1, call this the interim belief, it serves as their prior for observing E2 or

F2. E2 ⪰c F2 implies that the decision value upon observing E2 is weakly higher than that

for F2 for any prior. Thus E1

⊗
E2 ⪰ E1

⊗
F2. By the same reasoning, we can also deduce

that E1

⊗
E2 ⪰ F1

⊗
E2, and that both F1

⊗
E2 ⪰ F1

⊗
F2 and E1

⊗
F2 ⪰ F1

⊗
F2. Since

this preference relation has a utility representation (that of the expected value of the decision

problem), it is transitive. Therefore E1

⊗
E2 ⪰ F1

⊗
F2.

Now let us adopt the labels Ek := E1

⊗
...
⊗

Ek and F k := F1

⊗
...
⊗

Fk. E
k+1 =

Ek
⊗

Ek+1 and F k+1 = F k
⊗

Fk+1. Applying once more exactly the same reasoning above,

we can see that if for some k ∈ N Ek ⪰ F k, it follows that Ek+1 ⪰ F k+1. We have established

that E2 ⪰ F 2 (and of course we assumed that E1 = E1 ⪰ F1 = F 1), thus by induction it

follows that for any M , EM ⪰ FM

B Omitted Proofs

Proof of Lemma 1. The fact that the private and (motivated) social beliefs can be summed

and compared to 1 in order to choose an action can be seen by manipulating Bayes’ Rule. In

this case, the fact that my agents are assumed to combine their private and motivated social

beliefs as a Bayesian, as if they had both been formed in a Bayesian fashion, is essential. The

sum representation is then simply an application of Acemoglu et al. (2011, Proposition 2).

The exact form of the motivated social belief (MSB) if Pς(θ = 1|B(n)) < (1−R), is also

a straightforward consequence of the motivated reasoning procedure.

The form of MSB when Pς(θ = 1|B(n)) ≥ (1 − R) results from comparing the belief

formed by a Bayesian with prior 1
2
, and that formed by a Bayesian with prior 1

2
(1+ s). Let us

call the former P and the latter P̃:

(1 + s)P =
(1 + s)P(B(n)|θ = 1)

P(B(n)|θ = 1) + P(B(n)|θ = 0)

P̃ =
P(B(n)|θ = 1)(1 + s)

P(B(n)|θ = 1)(1 + s) + P(B(n)|θ = 0)(1− s)

(B.1)

(B.2)
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Dividing B.1 by B.2, and applying Bayes’ Rule (using the true prior) twice on the Right-hand

side produces:

(1 + s)
P
P̃
= 1 + s

(
P(θ = 1|B(n))− P(θ = 0|B(n))

)
(1 + s)

P
P̃
= 1− s+ 2sP

P̃ =
(1 + s)P

2sP+ (1− s)

Equivalently for type 0 agents one can find P̃ = (1−s)P
(1+s)−2sP .

I now present the proof of Theorem 2, this proof is by contradiction, though I present an

alternative that assumes the signal structure is nonstationary Appendix E.1.

Proof of Theorem 2. Let’s first prove that if there is a finite upper bound on each agent’s

neighborhood size (|B(n)| < M1 for all n), and a restriction such that argmink{B(n)} ≥
n−M2 (where of course M2 ≥M1), the statement holds.

Suppose for contradiction that αn → 1 as n → ∞. For any ϵ > 0, there is some Nϵ ∈ N
such that for all n > Nϵ, αn > 1 − ϵ. Define αM1−1

IOR < 1 as the accuracy of a Bayesian with

M1 − 1 rejecting neighbors, who is additionally informed that all his neighbors have rejected

their social signals. Choose any δ ∈ (0, 1), and ϵ such that:

ϵ < min{
(1
2
(1− β)

)M1−1
(1− δ)

(
1− αM1−1

UCD

)
,

δ/2

M1 − 1
(1−G0(R))}

This first term is reverse engineered to provide a contradiction, this second allows us to use

Lemma 6. Consider an agent m such that m > Nϵ +M2, and without loss of generality let

|B(m)| =M1 − 1. By our Lemma, the probability m has an all-rejection-region neighborhood

(all of his neighbors receive a social signal in [0, 1 − R) ∪ (R, 1]) is some Pm > 1 − δ. The

probability that they all reject is then the probability that each neighbor is of noncongenial

type multiplied by Pm, which is
(

1
2
(1− β)

)M1−1

Pm.

Thus we have

αm <
(
1−

(1
2
(1− β)

)M1−1
P1

)
· (1) +

(1
2
(1− β)

)M1−1
P1 · αM1−1

UCD

Our selection of ϵ then implies

1− ϵ < αm < 1−
(1
2
(1− β)

)M1−1
(1− δ)

(
1− αM1−1

UCD

)
Given our definition of ϵ, this is a contradiction! We have proved our theorem subject to
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the additional condition.

Now we must prove the theorem without the added restriction. The logic of the proof is

the same, except that without this restriction a neighborhood could always contain agents

from arbitrarily far back, preventing the use of Lemma 6 on the entire neighborhood.

Dropping the requirement that argmink{B(n)} ≥ n − M2, we can take the same δ as

before, and choose ϵ such that:

ϵ < min{ϵ∗,
(1
2
(1− β)

)M1−1

(1− δ)
(
1− αM1−1

UCD

)
,

δ/2

M1 − 1
(1−G0(R)) (B.3)

where ϵ∗ is defined later in the proof.

Let us partition the neighborhood into agents before Nϵ and agents after Nϵ (taking Nϵ

now to be that Nϵ corresponding to this newly selected (smaller) ϵ). Call B1(m) = B(m)∩{k :

k ≤ Nϵ} and B2(m) = B(m) \ B1(m). There must be an upper bound on the accuracy of

agents in B1(m) that is strictly less than 1, since only a finite amount of information has been

generated by any finite time in the game, including by Nϵ. Call this upper bound α1.

The information contained in the actions of B1(m) must be at most the information that

would be contained in the Blackwell supremum experiment of the set of all possible Blackwell

experiments with |B1(m)| binary signals and arbitrary correlation structure (such a thing

exists when |Θ| = 2 by Bertschinger and Rauh (2014)) with each of the |B1(m)| agents each
correct with probability α1. Consider m acting with the benefit of |B1(m)| such signals and

|B2(m)| signals of agents who rejected the social signal, call the accuracy that would result

from this α∗(|B2(m)|). This must be strictly less than 1 and no outcome of this is possible in

one state of the world, and impossible in the other.

The probability that at least one agent in B2(m) rejects their signal is now |B2(m)| × δ ≤
Nδ. Thus since we have chosen αn ≥ 1 − δ

|B1(m)|+|B2(m)|(1 − G0(R)), the probability that all

agents receive signals in the rejection region is at least
(
1 − |B2(m)| δ

|B1(m)|+|B2(m)|

)
. Let the

probability that all neighbors in |B2(m)| are in their rejection regions be P2.

We must have that:

αm <
(
1−

(1
2

)M1−1−|B1(m)|
P2

)
· 1 +

(1
2

)M1−1−|B1(m)|
P2α

∗(|B2(m)|)

αm < 1−
(1
2

)M1−|B1(m)|
P2(1− α∗(|B2(m)|))

αm < 1−
(1
2

)|B2(m)|
(
1− |B2(m)| δ

|B1(m)|+ |B2(m)|
)
(1− α∗(|B2(m)|))
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Now let us define:

ϵ∗ = minB2(m)

((1
2

)|B2(m)|(
1− |B2(m)| δ

|B1(m)|+ |B2(m)|
)
(1− α∗(|B2(m)|))

)
This must exist since B2(m) ∈ {0, ...,M1}. Thus we have from our definition of ϵ that:

1− ϵ < αm < 1−
(1
2

)|B2(m)|
(
1− |B2(m)| δ

|B1(m)|+ |B2(m)|
)
(1− α∗(|B2(m)|))

1− ϵ < 1−
(1
2

)|B2(m)|
(
1− |B2(m)| δ

|B1(m)|+ |B2(m)|
)
(1− α∗(|B2(m)|))

This is a contradiction. If |B1(m)| = M1 − 1 for all agents after Nϵ, then the expanding

observations condition is not even satisfied, and the agents are acting on the basis of a finite

amount of information in perpetuity, and of course complete Bayesian learning does not obtain.

Proof of Corollary 2.1. First, I prove that correct consensus does not obtain when we do not

have expanding sample sizes. Secondly I prove that there exist settings with expanding sample

sizes in which there is correct consensus in a model with only Bayesians (β = 1).

On this first point: by Theorem 2, in the presence of motivated reasoning there is no

complete Bayesian learning without expanding sample sizes so almost sure Bayesian learning

necessarily does not obtain (it is stronger than and implies complete Bayesian learning).

If the private beliefs under consideration are nonstationary, there cannot be consensus (as

any interior social belief can be overturned or rejected with strictly positive probability with

nonstationary beliefs). Part 2 of Theorem 1 also implies this.

With stationary information structures, either there are interior stationary beliefs in favour

of each state in which infinitely many agents can be stuck with positive probability, or this is

only true on one side in which case in at least one state there will not be consensus on the

correct state, and thus overall no correct consensus.

Moving onto the second point: Rosenberg and Vieille (2019, Theorem 3) establishes that

such Bayesian networks do exist. Assuming that private signals are not only unbounded but

also very informative in the sense that
∫ 1

0
1

G(p)
dp < +∞ and

∫ 1

0
1

1−G(1−p)
dp < +∞, and im-

posing two technical assumptions, they prove that learning is ‘efficient’ (the expected number

of wrong actions is finite) and therefore that there is almost sure learning and consensus (on

the true state) in the line network. Thus, there exist networks of Bayesian agents that do not

satisfy expanding sample sizes but nonetheless exhibit correct consensus.

Finally addressing the fragility element of the result: Theorem 2 holds for any β ∈ (0, 1),

any level of R < 1 and any s ∈ (0, 1). As discussed in Appendix F.1, it even holds if agents do
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not snap back to 1/2 but {ϵ, 1− ϵ}. Hence it does not matter how little motivated reasoning is

introduced, unbounded beliefs producing correct consensus in the Bayesian-only setting will

not continue to do so with motivated reasoners.

Proof of Theorem 3. Take an agent n with M nested neighbors. Using Lemma 7, we can

observe that each nested neighbor action must be more informative than the lower bound

Blackwell experiment. By Lemma 9, it therefore follows that a Bayesian agent observing M

nested neighbors must manage to match the state with greater probability than one observing

M lower bound experiments. As M converges to infinity, this lower bound probability con-

verges to 1. Therefore an agent observingM nested neighbor experiments must have Bayesian

accuracy converging to 1 as M converges to infinity. It follows that the agents within S must

have Bayesian accuracy converging towards 1, since for any M ∈ N the probability that they

observe fewer than M nested neighbors converges to zero.

Proof of Theorem 1 Part 3. To recall the assumptions already mentioned in the main text,

assume we have: (i) A complete network and (ii) Bounded beliefs: [1−B,B].

For any Bayesian social belief, λ, define ∆a(λ) as the (positive) distance between λn and

λn+1 upon observing xn = a with a ∈ {0, 1}. ∆a is well-defined (since the posterior depends

only upon the prior (the Bayesian social belief here) and likelihood) and a continuous function

of λ for all a, by the properties of Bayesian updating. The set [1 − b1, b0] is compact, so the

maxima ∆a := maxλ∈[1−b1,b0]{∆a(λ)} exist by the Weierstrass extreme value theorem.

Suppose that R > b0 +∆1 , and 1−R < (1− b1)−∆0; this ensures that for no Bayesian

social belief will any observation be able to push the updated Bayesian social belief into a

rejection in which some types will reject it. These definitions establish that the Bayesian social

belief cannot enter a rejection region, so to complete the proof we must simply establish that

the Bayesian social belief will necessarily enter the region (1− b1, b0)
c at some point, and that

if it does so, agents will all take the same action.

This second point is easy to see; if, for example, the Bayesian social belief drops below

1 − b1, it is sufficiently low that no signal can satisfy the decision rule in Proposition 1 and

lead the agent to choose xn = 1. Since the belief is not in the rejection region, this is sufficient

to establish that type 1 agents will choose xn = 1. The other type agents have equivalent

thresholds 1− b0 and 1−B that are both higher than 1− b1, so all agents are choosing xn = 0

in this region. To prove the first point, we can simply deploy Smith and Sorensen (2000,

Theorem B.1); the Martingale-Markov Bayesian social belief must eventually settle at some

fixed-point (converging almost surely to it). Since the convergence in this theorem of Smith

and Sorensen is almost sure, it establishes consensus (/tribalism) as defined in Definition

2.
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Proof of Proposition 2. Suppose, without loss of generality, that θ = 0, a symmetric argument

holds for θ = 1. Firstly, we can establish that when experiment A dominates experiment B

in the confidence order, it engenders beliefs stronger than R with at least weakly greater

probability.

To see this, in place of every agent, consider an agent who observes exactly the same

information, but chooses actions to solve a different ‘standard’ decision problem (where again

I mean ‘standard’ in the sense of Weber (2010)). Specifically, suppose they solve a binary

problem where action xn = 0 is optimal if they have a belief less than 1 − R that θ = 1 and

xn = 1 is optimal otherwise.24 Whether an agent’s decision value is higher or lower in such a

problem corresponds exactly to the probability they have a belief less than 1−R in each state

of the world. Since this is a standard decision problem, Lemma’s 7 and 9 apply, and we can see

that observing M nested neighbors dominates observing M lower bound experiments for any

M ∈ N, i.e. produces a higher probability of having a posterior lower than R. Since xn = 0 is

chosen whenever an agent has belief greater than 1 − R, they choose xn = 0 whenever their

log-likelihood ratio is less than log 1−R
R

.

Following Moscarini and Smith (2002) and Tamuz (2022), and calling the posterior upon

observing m copies of the lower bound experiment qm, we can observe that the probability of

forming a belief above 1−R after m can be expressed:

P(qm ≤ 1−R|θ = 0) = exp
(
−mρ0∆ + o(n)

)
where ρ0∆ = min tK0

∆(t) and K
0
∆ is the cumulant generating function of the log-likelihood ratio

of the lower bound experiment ∆ conditional on θ = 0. Thus, for any ϵ > 0 there is some M

big enough such that P(qm ≤ 1−R|θ = 0) > 1− ϵ for all m > M .
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Online Appendix

C Online Appendix: Line Network Example Working

C.1 A Line Network Example & Information Loss

The line network is a particularly convenient topology to study, especially with some spe-

cific parameter assumptions (though these assumptions serve to create a convenient example,

the basic intuition is general, and applies to any line network with a strictly positive mea-

sure of motivated reasoners and 1/2 < R < 1). In it, we can straightforwardly express the

Bayesian accuracy, αn, of an agent n, who observes a Bayesian predecessor, as a function of

the Bayesian accuracy of said predecessor: αn−1. Even if we suppose that there are in fact no

Bayesians at all, how they would behave reflects the extent to which information is successfully

aggregated through the observation network as the game proceeds. In this simplified example

I assume there is no prior-shifting (s = 0), R = 0.7, β = 0, and the private signals have

density functions: (f0(ς), f1(ς)) = (2(1 − ς), 2ς). These signal distributions produce identical

belief distributions: fθ(·) = gθ(·).
It follows that the CDFs of the belief distributions take the following forms:

• G0(x) = F0(x) = x(2− x)

• G0(1− x) = (1− x)(1 + x)

• G1(x) = x2

• G1(1− x) = (1− x)2

Claim 1. The relationship between the Bayesian accuracy and possible Bayesian social beliefs

of n is given by:

2αn − 1 =
E∑

k=1

hn1 (sb
k
n)
(1− sbkn)

sbkn
G0(1− sbkn)−

E∑
k=1

hn1 (sb
k
n)G1(1− sbkn)

Proof. There are a finite number of possible social signals, and the Bayesian social belief
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induced by each of them is deterministic. These beliefs can be listed in order: {sb1n, sb2n, ..., sbEn }.

αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2
P(pn + SBn > 1|θ = 1)

αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2

(
1− P(pn + SBn ≤ 1|θ = 1)

)
2αn − 1 = P(pn + SBn < 1|θ = 0)− P(pn + SBn ≤ 1|θ = 1)

=
E∑

k=1

P(SBn = sbkn|θ = 0)[G0(1− sbkn)]−
E∑

k=1

P(SB = sbkn|θ = 1)G1(1− sbkn)

=
E∑

k=1

hn0 (sb
k
n)G0(1− sbkn)−

E∑
k=1

hn1 (sb
k
n)G1(1− sbkn)

Using Lemma 5 that hn0 (SBn) = hn1 (SBn)
(1−SBn)

SBn
, we get the above expression.

Let us call hn1 (sb
0
n) := qn0 , since there are only two possible signals for each agent in the

line network it follows that hn1 (sb
1
n) := 1− qn0 .

2αn − 1 = qn0

[
(1− sb0n)

sb0n
G0(1− sb0n)−G1(1− sb0n)

]

+ (1− qn0 )

[
(1− sb1n)

sb1n
G0(1− sb1n)−G1(1− sb1n)

]
The symmetry of my assumptions also gives us that sb0n = 1− sb1n, so we can simplify this

further to:

= qn0 (sb
1
n)

2

[
1

1− sb1n

]

+ (1− sb1n)
2

[
1

sb1n

]
− qn0 (1− sb1n)

2

[
1

sb1n

]
This symmetry also means that hn1 (sb

1
n) = hn0 (sb

0
n) and hn1 (sb

0
n) = hn0 (sb

1
n), which with

lemma 5 implies that hn1 (sb
1
n) = sb1n. Using this, the above becomes:

αn = (qn0 )
2 − qn0 + 1 = αn−1 − αn−1 + 1

since of course qn0 is simply αn−1 in the line network. Thus upon observing a binary signal

that matches the correct state with probability α, a Bayesian agent with belief distributions

(G0(·),G1(·)) will match the true state with probability H(α) given by equation C.1. Given

the particular belief distributions specified above, this simplifies to C.2.
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H(α) :=
α

2

[
G0(α) + 1−G1(1− α)

]
+

(1− α)

2

[
G0(1− α) + 1−G1(α)

]
H(α) = α2 − α + 1

(C.1)

(C.2)

α∗ is then simply defined as the value H(R). Beyond this, with 50% probability n is

observing a congenial type agent who matches the state with probability αn−1, and otherwise

he is observing an agent with success probability H(0.5) = 0.75, since they revert to the prior

of 1
2
.

The first panel of figure 4, subfigure 4a, illustrates the fact that a line network of Bayesian

agents gives learning, since observing an agent with any level of accuracy α gives some H(α) >

α, the following agent then achieves an accuracy of H(H(α)) > H(α) and so on. The accuracy

eventually converges to 1 where H(1) = 1, reflecting the fact that complete Bayesian learning

does obtain in a line network of exclusively Bayesian agents. Our agents, however, are not

Bayesians. Beyond a certain level of accuracy, α∗, an agent must be observing a social signal

generating a Bayesian social belief in the region [0, 1 − R) ∪ (R, 1] in order to do better.

Therefore, observing an agent whose Bayesian equivalent matches the state with probability

α∗ or higher implies observing an agent who will reject their social signal if they are of the

non-congenial type. Thus, the action agent n observes when αn−1 > α matches the state with

probability αn−1 if n− 1 is of congenial type and with probability αRej = α1 otherwise. Their

Bayesian accuracy becomes H(1
2
αn−1+

1
2
αRej), where αRej is the accuracy of a Bayesian agent

whose neighbor will have rejected their social signal if of non-congenial type.25

Figure 4b shows U(α) := H(1
2
α+ 1

2
αRej) function this bound graphed alongside our H(α)

function. Since H(α) is relevant below α∗, and U(α) above it, we can see that the function

in figure 4c gives the Bayesian accuracy of any agent observing a neighbor of any level of

accuracy. Since the range of this function, unlike its Bayesian cousin H(α), is bounded away

from 1, no agent can ever approach perfect accuracy.

25The antisymmetric distributions of this example guarantee that there is a single α∗ above which non-
congenial types reject, and below which they do not. Similar arguments still allow us to bound the maximal
accuracy away from 1 without this property.
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Figure 4

Whatever the values of the above parameters (and implied form of the function H(·)), an
agent must either be observing an neighbor with αn−1 ≤ α∗ < 1- in which case they must

have an accuracy below H(α∗)- or a neighbor with accuracy αn−1 > α∗, in which case their

accuracy is bounded above by sup{U(α) : α ∈ (α∗, 1]} = H(1
2
(1− β)αRej +

1
2
(1 + β)) < 1.

∀n αn ≤ max{H(α∗), H(
1

2
(1− β)αRej +

1

2
(1 + β))} < 1

Plotting this as in Figure 5a, we can see that the Bayesian accuracy of agents does not

necessarily converge at all, let alone to 1. If the α∗ implied by R is above the intersection

of U(α) with the 45° line, the accuracy of agents repeatedly climbs the H(α) curve only to

drop back down below α∗ when an agent achieves an accuracy of above α∗. Otherwise, the

process keeps climbing upon reaching the U(α) curve, converging to this U(α) = α fixed

point. Figure 5b shows that a network in which each agent draws a neighbor uniformly from

all predecessors is similar in that any R implying an α∗ value below the fixed point of U(α)

produces an asymptotic accuracy of exactly this fixed point. In contrast, however, for higher

values of R it achieves smooth convergence to α∗, if it achieves this very slowly.
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(a) The line network (b) Uniform Sampling

Figure 5: The path of αn against n, with R ∈ {0.7, 0.9}, s = 0, β = 0, (f0, f1) = (2(1− ς), 2ς).

This failure of complete Bayesian learning clearly demonstrates that the Improvement

Principle arguments no longer hold in this setting. The Bayesian equivalent of an agent n

observing the action of an agent n − 1 with accuracy αn−1 > α∗ can no longer improve

upon αn−1, as this is the accuracy of a latent variable. They can only improve upon the

probability with which the observed action matches the state. Learning could perhaps be

salvaged from this breakdown in information monotonicity if the correlation between xn and

χn were converging to 1 as αn → 1, and the probability P(xn ̸= χn) converged to zero

fast enough, but something closer to the opposite occurs here. The higher αn, the higher

the probability with which non-congenial agents form rejection-region Bayesian social beliefs.

Since the probability with which a given agent is of the non-congenial type is 1
2
(1 − β), this

implies that P(xn ̸= χn) → 1
2
(1− β) as αn → 1.

C.2 Efficiency and Speed of Convergence

Incidentally, this is an example of assumptions that do not give the efficiency of Rosenberg

and Vieille (2019) (finitely many wrong actions in expectation) even without motivated reason-

ers though they would give complete Bayesian learning in that setting, since the signal struc-

ture is not efficient (
∫ 1

0
1
s
= ∞). In fact Acemoglu et al. (2009) also allow use to give the speed

of convergence here. Acemoglu et al. (2009, Proposition 2) states that in this network topol-

ogy, with private belief distributions with polynomial tails (as here), P(xn ̸= θ) = O(n
−1

K+1 )

where there exist C and K that satisfy:

min{G1(
1− α

2
), 1−G0(

1 + α

2
)} ≥ C(1− α)K

With our private belief distributions, C = 1 and K = 1, so P(xn ̸= θ) = O(n
−1
2 ).
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D Online Appendix: Example 1 and an Alternative Proof

for Theorem 2

D.1 Learning without Expanding Nested Samples

In the main article, I establish that expanding nested samples is a sufficient condition for

learning with a nonstationary information structure. Here I show that it is not a necessary

condition with a counterexample.

Example 1 (Expanding nested samples is not necessary for complete Bayesian learning within

S). Consider again a set S ′ containing agents with indices in {10(m−1) : m ∈ N} in which all

agents bar agent 1 observe their immediate predecessor in S ′, and take the parameter values

of the example represented by the upper curve (orange) in Figure 5a (which are β = 0, s = 0,

R = 0.9, (f0, f1) = (2(1 − ς), 2ς)). The 8th agent in S ′ is the first to have a lower αn than

their immediate predecessor, and every fifth agent in S ′ after them (i.e. the 8th, 13th, 18th,

23rd and so on agents within S ′) is in a similar position, let us refer to this subset of S ′ as

S ′′. Suppose also that agents in the set N \ S ′ have neighborhoods B(n) = S ′′ ∩ {1, ..., n− 1}.
Expanding nested samples does not hold for N \ S ′, but there is complete Bayesian learning

within this set.

Proof. A covariance stationary process {Yt}∞t=1 with mean µ is defined by the following three

properties (Hamilton, 2020):

E(Yt) = µ ∀t

E(Yt − µ)(Yt−j − µ) = γj ∀t
∞∑
j=0

|γj| <∞

Let us use the notation that the mth agent within S ′′ has index n(m). Thanks to the

symmetry of this example, the fact that there is no prior-shifting, and the fact that agents

within S ′′ never reject their signals, we have that agent n(m) will choose xn(m) = 1 with

probability αn(m) > 0.5 if θ = 1, and 1− αn(m) < 0.5 if θ = 0. Although we do not have that

αn(m) = αn(m+j) for all j, we will have that for some small ϵ > 0 |αn(m) − αn(m+j)| < ϵ.

Let us define the process {Yt}∞t=1 where Yt = xn(t), and suppose without loss of generality

that θ = 1; it follows that E(Yt) = αn(t). The covariances will also vary with t, but crucially

form an absolutely convergent sequence, as I establish next.

Let the indicator variable Zt reflect whether or not the possibly-rejecting agent following

n(t) actually did reject their social signal. This happens with 50% probability in both states
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of the world, and is completely independent of Yt. We can then use the conditional covariance

formula to establish that the covariances are absolutely convergent:

E[E[YtYt+j]] = P(Zt = 0)E[YtYt+1|Zt = 0] + P(Zt = 1)E[YtYt+1|Zt = 1]

=
1

2
E(YtYt+j|Zt = 0) +

1

2
E[Yt]E[Yt+1|Zt = 1]

In this second line, the final conditional expectation can be split into a product conditional

expectation since the Y variables are independent conditional on Zt = 1. Yt is then inde-

pendent of Zt as already mentioned, so the conditional expectation can be replaced with an

unconditional one.

cov(Yt, Yt+1) =
1

2
E(YtYt+j|Zt = 0) +

1

2
E[Yt]E[Yt+1|Zt = 1]

− E[Yt]
(1
2
E[Yt+1|Zt = 1] +

1

2
E[Yt+1|Zt = 0]

)
=

1

2
E(YtYt+j|Zt = 0)− 1

2
E[Yt]E[Yt+1|Zt = 0]

The covariance between these two terms is necessarily positive, and all of the expectations

in this expression are positive and strictly less than 1, so it follows that |cov(Yt, Yt+1)| < 1
2
.

Similarly, we can consider the covariance between Yt and Yt+2, and find that:

cov(Yt, Yt+2) =
1

4
E[YtYt+2|Zt = 0, Zt+1 = 0] +

3

4
E[Yt]E[Yt+2|Zt = 1 or Zt+1 = 1]

− E[Yt]
(3
4
E[Yt+2|Zt = 1 or Zt+1 = 1] +

1

4
E[Yt+2|Zt = 0, Zt+1 = 0]

)
=

1

4
E[YtYt+2|Zt = 0, Zt+1 = 0]− 1

4
E[Yt]E[Yt+2|Zt = 0, Zt+1 = 0]

This in turn gives that |cov(Yt, Yt+1)| < 1
4
, and similar reasoning will establish that |cov(Yt, Yt+j)| <

1
2j

for any j. Thus the covariances are absolutely convergent.

Using this, we can establish, according to the standard line of argument (as in Hamilton

(2020, Chapter 7.2, pg. 186)) that:

E(Y T − αT )
2 < (

1

T
)
{
1 + 2(T − 1)

1

2
+ 2(

1

22
)(T − 2)/T + ...+ [1/T ]2

( 1

2T−1

)}
which converges to 0 as the sample size grows. If αT were a fixed value for all T , this would

establish mean square convergence to it, but here it simply establishes that Y T will enter the

region [lim infm∈N αn(m), lim supm∈N αn(m)]. In probability, this average will eventually enter

this region if the state of the world is θ = 1, and it will enter (and remain in) an analogous

region below 0.5 if θ = 0. Thus for the agents in N \ S ′′ limn∈N\S′′ αn = 1, and we have
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learning.

The intuition behind this example is that the fact of signal rejection within set S ′ ensures

that to observe S ′′ is to observe an almost covariance stationary process (it does not quite fit

the definition of covariance stationarity, but is close enough to allow us to analyse it in a very

similar fashion, as can be seen in the proof). Given this, the time average of the actions of

agents in S ′′ will converge in mean-square to one quantity, strictly greater than 0.5, if θ = 1,

and another, strictly less than 0.5, if θ = 0. Those observing these agents thus learn the true

state simply by observing this time average, despite never observing the neighborhood of any

agent they observe, and we have learning on the basis of a Large Sample Principle (cf. Golub

& Sadler 2017, who split learning results into improvement and large sample principle results).

The large sample result we have here is arguably more true to the moniker ‘large sam-

ple’ than other results that take this title. Acemoglu et al. (2011, Theorem 4) and Lomys

(2020, Theorem 2) both provide large sample results that establish learning when the network

contains infinitely many sacrificial lambs who observe small enough neighborhoods that their

action always reflects their private signal. Both, however, depend on a ‘core’ of agents who

are either sacrificial lambs with some small and vanishing probability, or observe all preced-

ing agents within this core. This allows the use of martingale convergence arguments, and

intuitively acts as ‘storage’ for all this information. Expanding observations with respect to

this set of agents then gives learning for all agents. In Example 1 such a group is not needed:

the large samples gives learning alone, without any need for a core facilitating martingale

arguments. In this sense, and very specific set of circumstances, the presence of motivated

reasoners helps learning. If the private beliefs are bounded but not severely so, then the above

network topology would not achieve learning with Bayesian agents, the line network agents in

S ′ would simply copy each other after a certain number of initial actions, and almost all the

neighbors observed by agents within N \ S ′ would be completely uninformative.

E Online Appendix: Learning with Stationary Signal

Structures

As is established by part 3 of theorem 1, expanding nested samples is clearly not a sufficient

condition for learning when the signal structure is stationary: the complete network exhibits

expanding sample sizes, and learning does not occur here with stationary beliefs. However, it

does not follow that one cannot achieve complete Bayesian learning with stationary beliefs; in

Acemoglu et al. (2011), one of their most surprising results (since their article was written as

an extension to Smith and Sorensen (2000), in which bounded beliefs preclude learning) is that
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there are some network topologies that achieve complete learning even with bounded beliefs.

The rough intuition for this is that whereas all agents eventually ignore their signals in the

complete network, more generally it is possible to concoct network topologies in which there

are infinitely many ‘sacrificial lambs’ whose neighborhoods will certainly produce a Bayesian

social belief weak enough that the agent will choose xn = 0 for some non-null private signals,

and xn = 1 for others. A similar trick will allow us to establish the possibility of complete

Bayesian learning for stationary beliefs here.

The specific class of network topologies used in Acemoglu et al. (2011, Theorem 4) crucially

involves a subset of agents S, whose elements each observe the entire history of the network

with some probability bounded away from zero, but of whom infinitely many also act partially

on the basis of their private signal (they have a ‘non-persuasive neighborhood’- defined below).

This set crucially allows both the use of martingale convergence (since the notion of ‘the’ social

belief is well-defined as the belief of each agent in the event they see the entire history) and

guarantees that each agent relies on their private signal with non-zero probability. A martingale

convergence argument gives learning for this subset of agents, and all other agents that are

not contained within S are then assumed to have expanding observations with respect to S,

and an improvement principle argument gives learning overall.

Definition 6 (Non-Persuasive neighborhoods). A finite set B ⊂ N is a non-persuasive neigh-

borhood in equilibrium ς ∈ Σ if

Pς(θ = 1|xk = yk for all k ∈ B) ∈ (B,B)

for any set of values yk ∈ {0, 1} for each k. The set of all non-persuasive neighborhoods is Uς .

The same reasoning clearly cannot apply exactly here, as we have already noted that

improvement principles break down in this motivated reasoning setting, as the action-choice

to be improved upon is a latent variable, whose correlation with the observed action of an agent

does not converge to 1 as αn → 1. Thus for one set of agents to have expanding observations

with respect to a distinct set of agents that learn asymptotically will no longer cause this first

set to learn.
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Theorem 4. Let (F0,F1) be an arbitrary signal structure and let S ⊆ N. Assume the network

topology has a lower bound on the probability of observing the entire history of actions along

S i.e. there exists some ϵ > 0 such that

Qn(B(n) = {1, ..., n− 1}) ≥ ϵ for all n ∈ S

Assume further that for some positive integer M and non-persuasive neighborhoods C1, ..., CM

i.e. Ci ∈ Uς for all i = 1, ...,M , we have

∑
n∈S

M∑
i=1

Qn(B(n) = Ci) = ∞

Then complete Bayesian learning occurs in equilibrium ς if the network topology {Qn}n∈N has

expanding nested neighborhood samples with respect to S.

Proof. Learning within the set S holds on exactly the same basis as in Acemoglu et al.

(2011), and learning outside follows from the same argument used to establish the sufficiency

of expanding nested neighborhood samples for learning with nonstationary beliefs in Theorem

3.

Thus learning is certainly still possible with stationary signals, but requires much stronger

assumptions on the exact structure of the network. Expanding nested neighborhood samples is

already quite an extreme condition (even the weaker expanding sample sizes is quite dramatic),

but no longer suffices. As per Acemoglu et al. (2011, Propositions 3 & 4), one can contrive

specific network topologies in which the first K agents are necessarily non-persuasive (these

constructions of course still produce non-persuasive neighborhoods here), though it seems

implausible that a real-life social network would exhibit such a specific structure.

E.1 Alternative Proof for Theorem 1

I have proved Theorem 1 with a proof by contradiction in Appendix B. Here I present a

difference proof that assumes the signal structure is nonstationary (and thus does not fully

prove the statement) but is more constructive, and thus valuable in providing further intuition.

Proof. Suppose at first that θ = 1. For any collection ofM agents, with probability (1
2
(1−β))M

they are all of non-congenial type (i.e. their type and the state their social beliefs support

are opposite). For each of these agents with a social belief stronger than R in favour of either

state, they will reject this social belief. Conditional on rejection, there is then probability

G1(
1
2
) they will take action x = 0. There is probability 1−G1(

1
2
) they will take action one.
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If they do not reject their social belief it is because it was not strong enough (since they are

of non-congenial type). Hence a private belief stronger than the social belief corresponding

to a Bayesian social belief of R in favour of the state not supported by their social belief

will lead them to act according to their private belief. There is a probability of at least

min{G1(1 − (1−s)R
(1+s)−2sR

), 1 − G1(
(1+s)(1−R)
s−2sR+1

)} that this will occur, where these expressions are

computed using Lemma 1.

Hence for each individual agent, the probability of them taking action x = 1 conditional

on their being of non-congenial type is at least min{1 − G1(
(1+s)(1−R)
s−2sR+1

), 1 − G1(
1
2
)} (either

they are in the rejection region, or they are not and the first probability is strictly posi-

tive since the signal structure is nonstationary), and the analogous probability for x = 0 is

min{G1(1− (1−s)R
(1+s)−2sR

),G1(
1
2
)}. Let us call these probabilities p(1, 1) and p(1, 0). Note that both

probabilities are strictly greater than 0 and strictly less than 1 at any. Note also that these

events concern only private signals, and are thus conditionally independent across agents. The

types of agents are independent as well (not even just conditionally independent).

Any social signal is a sequence of 0s and 1s, and so for each action observed in a given

neighborhood we can note that the realisation in question was set to occur with at least

the relevant minimum probability derived above. Since the private-signal events discussed

are conditionally independent, they probability of observing social signal SS (whatever it

is) conditional on all neighbors being of non-congenial type is simply the product of these

minimum probabilities. Let us call this P1(SS|NC). A lower bound on the probability of

observing this (not conditional on their all being non-congenial) is therefore 0 < (1
2
(1 −

β))M × P1(SS|NC) < 1. Since the probabilities of observing all possible social signals must

sum to 1, and each social signal occurs with probability bounded away from zero, this implies

that we can also bound the probability of observing any social signal away from 1.

Note that we can go through exactly the same line of reasoning supposing θ = 0. Hence

for every possible social signal, the probability of observing it in either state is bounded away

from 1 and 0. Hence, the likelihood ratio of any signal is bounded away from 0 and ∞, and

the Bayesian beliefs resulting from them are bounded away from 0 and 1. This in turn implies

that their accuracy must also be bounded away from one.

Without expanding sample sizes, as per the hypothesis of this theorem, there is a sequence

of infinitely many agents with probability of observing fewer than M agents for some M ∈ N
that does not converge to 0. Thus there accuracy is at most this probability multiplied by the

bound implied by the reasoning above for M and one minus this probability multiplied by 1.

This is strictly less than 1. Hence without expanding sample sizes complete Bayesian learning

does not obtain.
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F Online Appendix: Extensions

F.1 Applying Prior-Shifting to Rejected Signals

In the main model of this paper, I assume that agents who reject social signals adopt

the social belief 1
2
in its place. However, there are other assumptions one could make. First

of all, the assumption that directly follows Little (2021) is that type 0 agents use 1
2
(1 − s)

and type 1 agents 1
2
(1 + s). It might seem extreme that agents who reject social signals in

one direction replace them with a belief in favor of the opposite state, but some subjects

in Oprea and Yuksel (2022, Result 4) do in fact do this. Alternatively, agents could reject

signals but replace them with less extreme beliefs in the same direction. For example, type 0

agents could replace rejected beliefs with 1
2
(1 + s) and type 1 agents with 1

2
(1− s). The main

change this brings about is to ensure that the orange and red regions of Figure 2 meeting no

longer guarantees an information structure is nonstationary. If the signals are bounded, and

s extreme enough, it can be that (in the first case, where type 0 adopt 1
2
(1 − s)) all type 0

agents that reject necessarily choose xn = 0. This would ensure that, on the complete network

for example, agents polarise exactly by type and we have tribalism. We would have neither

learning nor consensus when R < b0 and 1 − R > 1 − b1. Hence the Theorem 1 result on

consensus collapse still holds, but tribalism is more common, since motivated reasoners who

reject extreme information then choose their own type. With s not sufficiently extreme, as

for example is true for all s with unbounded signals, the red and orange regions overlapping

is once again sufficient for nonstationarity. On the complete network, therefore, we would

have learning in such a setting, but with a larger and larger proportion of non-congenial

types choosing their own type as we increase s (subject to the constraint that this not be

increased so much as render the information structure stationary). Hence with unbounded

beliefs, increasing s to 1 can lead to complete tribalism in the complete network, where all

motivated agents choose their own type, and Bayesian agents the correct state.

Theorem 2 holds as long as we assume that all social beliefs sb ∈ [0, 1] are mapped to some

interval [ϵ, 1 − ϵ] for ϵ > 0. This guarantees that agents rejecting beliefs can only ever be so

informative, and the proof of Theorem 2 goes through. Theorem 3 still holds as well, though

as above requiring conditions to be nonstationary becomes more demanding.

In the model where type 0 agents replace rejected beliefs with 1
2
(1+s), we have the perverse

result on the complete network that (for strong enough s) all type 0 agents will choose xn = 1

and all type 1 agents xn = 0.

Corollary 2.1 still holds as well, as long again as all social beliefs sb ∈ [0, 1] are mapped

to some interval [ϵ, 1− ϵ] for ϵ > 0, and in fact even agents only perform rejection (on beliefs

in the rejection region) with some probability δ > 0. This adds further explanation to my
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suggestion that not much motivated reasoning is needed in order to break correct consensus

that obtains in some sparse Bayesian networks with sufficiently informative private signals.

Given the prevalence of conspiracy theories, the possibility that some will find a reason to

ignore information in the social history does not seem too strong an assumption for political

learning.

F.2 Combined Motivated Reasoning

This paper assumes, as discussed in the Model section, that motivated reasoning occurs

only with the social belief. This modelling decision reflects the experimental evidence that

whilst people do manage to process private signals rationally, they can be widely irrational in

their treatment of social signals. Oprea & Yuksel 2022 in particular show this in the context

of motivated reasoning, finding patterns of behavior that can be explained by the model of

motivated reasoning I used.

However, both of these experiments give agents access to precise private signals that are

clearly mathematically defined objects. Perhaps agents process these signals rationally, but

extend motivated reasoning to all their information when private signals are less well-defined.

Perhaps private signals simple represent an agent’s judgement on a question, or the fruit of

their own investigations on the internet. If so, a model of motivated reasoning that applies

the motivated process to the overall signal might be interesting to study. I refer to this as

‘Combined Motivated Reasoning’, and outline here the ways in which this model diverges from

or resembles the main model of this paper.

The necessity of expanding sample sizes is easier to show with combined motivated rea-

soning; since it is the overall belief that now may be rejected, we can observe that for every

Bayesian social belief λ ∈ (0, 1) either there is some non-zero probability that the agent will

form a combined belief within [0, 1 − R) ∪ (R, 1] or we can bound their overall belief away

from 0 and 1. Constructing a contradiction argument as in my proof of Theorem 2, for any

neighborhood of size m, the probability that all neighbors are of non-congenial type is (1
2
)m,

and multiplying this by the m strictly positive probabilities of rejection-region beliefs gives

a non-zero probability that all neighbors have rejected their beliefs (taking agents observed

sufficiently recently, and thus with positive probability of forming rejection region beliefs).

Agents who reject their beliefs (with combined motivated reasoning) simply choose their type

as their action, and no information at all about θ is communicated by this fact.

Combined motivated reasoning resurrects the possibility of confounded learning in the

complete network, since as the Bayesian social belief moves to one extreme, the probability

that non-congenial types reject their beliefs increases (in which case they choose xn = τn).

Thus, expanding nested samples is no longer a sufficient condition for learning.

54



In this setting the results of Theorem 1 all hold. Complete Bayesian learning implies the

combined belief is within a rejection region (that corresponding to the true state), and thus

that non-congenial types all choose the incorrect state of the world. Part two holds on the

basis of exactly the same reasoning as proves it in the main paper. For part 3, with (1) B > 1
2

sufficiently low, (2) B < 1
2
sufficiently high, and (3) very high R < 1; the social belief can

converge to a stationary point, where even the strongest private signal does not produce a

combined belief in a rejection region.

With stationary beliefs, there will be some region of Bayesian social beliefs around 1
2

such that, even combined with the most extreme possible private signals, they cannot lead

to a rejection region combined relief, thus consensus will be achieved in a complete network.

Hence, though this paper is primarily concerned with social motivated reasoning, which seems

to best reflect the experimental evidence we have on how people behave, the key message that

polarization becomes inevitable in a world of increasing informational access and ideological

disagreement still holds.

F.3 Reject mild signals, not extreme ones

An alternative approach to motivated reasoning is suggested by Epley and Gilovich (2016),

and their view that: “When considering propositions they would prefer to be true, people tend

to ask themselves something like “Can I believe this?” This evidentiary standard is rather easy

to meet; after all, some evidence can usually be found even for highly dubious propositions...

In contrast, when considering propositions they would prefer not to be true, people tend to

ask themselves something like “Must I believe this?”” Given this, one might be interested in

studying motivated reasoners who instead reject information in the set (0.5, R] if they are type

0, or [1−R, 0.5) if they are type 1, rather than (R, 1] and [0, 1−R) as in my specification.

A first point is to note that if we adopt a probabilistic interpretation of this, the results of

this article still all hold. By ‘probabilistic interpretation’, I mean a model in which agents only

ever reject social information with some probability decreasing in the strength of the evidence.

For example, if type 0 agents rejected evidence as in figure 6, rejected Bayesian social beliefs

above 0.5 with probability 1
2
(1− SB)2 + ϵ for some ϵ > 0.
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P(Rej)

0 1

SB

0.3

1/2

Figure 6: (1− x)2 + 0.01 rejection probability beyond 1
2

Such a rejection procedure preserves the nonstationary property that underlies many of

my results, thus preserving the results themselves. In fact, it preserves this property for any

information structure (the distinction I draw in the main article between stationary and

nonstationary becomes moot- all signal structures are nonstationary). The major difference

with this model, compared to the model I study, is that the magnitude of asymptotic dissensus

with expanding sample sizes will be much smaller (since as Bayesian social beliefs converge

to 1, the fraction of agents rejecting their Bayesian social beliefs converges to 1
2
ϵ.

However, if we do not take this specification, and study a model in which agents reject

sufficiently weak Bayesian social beliefs with probability 1 and otherwise with probability zero,

this is no longer the case. If we first consider the line network, and suppose that agents do

not engage in prior-shifting, we can see that belief rejection is no longer sufficient to make

expanding sample sizes a necessary condition.

• Agent 1 starts with 0.5, and clearly does not reject.

• Agent 2 rejects with probability 0.5.

• Therefore the probability with which his action matches the state is H(0.5α1+0.5αRej).

• Similarly, all agents n ∈ {3, ...} have accuracy H(0.5αn−1 + 0.5αRej).

From this it follows that if H(0.5+0.5αRej) < α∗ (recall that α∗ is that success probability

that implies the agent has observed a social signal outside the region [1− R,R]), agents will

never achieve a Bayesian social belief high enough to exit the rejection region and we will not

have learning. On the other hand, if H(αRej) > α∗, then the agents leave the rejection region

immediately and complete Bayesian learning (and in this model, consensus) occurs. Thus with

such a specification it is still the case that expanding observations is not a sufficient condition

for learning, but also that expanding sample sizes in no longer necessary.
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