
TLDNR: Inattentive Learning on the Internet

John W.E. Cremin∗†

December 15, 2025

Latest Version

Abstract

Our ever greater access to information has not produced a perfectly informed society

of political consensus. In this article, I study the role of rational inattention in explaining

this, within a model of sequential social learning. In so doing, I illustrate how to tractably

model a very general class of ‘social cost functions’: functions that give the cost of

observing any given subset of predecessors. In such a model, where there are costs to

learning both from these social signals and private information, I find that making access

to both forms of information cheaper (either by making the cost of private signals lower,

or making it easier to observe the actions of predecessors) can reduce the asymptotic

probability with which agents correctly match the state. Finally, I use my model to study

the impact of the internet on our media environment, showing how greater access to the

opinions of others on social media (for example, those of influencers) can remove the

incentives for news organisations to produce high quality news in equilibrium.

Keywords— Sequential Social Learning, Endogenous Social Networks, Network Theory, Informa-

tion Economics

1 Introduction

“Orwell feared those who would deprive us of information. Huxley feared those who would give

us so much that we would be reduced to passivity and egoism. Orwell feared that the truth would be

concealed from us. Huxley feared the truth would be drowned in a sea of irrelevance.” Postman (2005)

Access to information is cheaper than ever before, and our ability to share that information with

each other has never been so great, yet the resulting glut of information does not seem to have

produced a hyper-rational paradise of informed consensus. Rather, polling data shows that even on

questions of basic fact voters are not able to reliably discern the true state of the world. As I note in
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Cremin (2023), the ‘Polarization of Reality ’ observed by Alesina et al. (2020) seems a fixed feature of

modern politics, and a seemingly paradoxical one in view of the glut of available information in the

modern world. However, whereas Cremin (2023) considers the role of partisan motivated reasoning

in impeding social learning, here I show how even without partisanship, an informational glut can

actively degrade learning: failures of learning can directly result from this excess of information

brought about by the internet. Even without any partisan noise agents (as in Cremin (2025)), and

without any partisan bias on behalf of agents, the reduction in the cost of obtaining information, and

observing the actions of others, can itself damage learning and reduce the probability with which

agents manage to correctly match the state.

That information is costly to obtain, both in terms of money and cognitive resources, is clearly

relevant to social learning, and one of the most obvious consequences of the development of the

internet is that the costs of doing so have fallen in recent decades. In this paper, I set out a model

of sequential social learning in which agents are rationally inattentive, and face costs to observe

both private signals, and also the actions of their predecessors. My model is a notationally minimal

representation of a more general specification of information costs, and one of its contributions is to

show how one can analyse learning in the context of such a general model by considering weighted

observation networks that provide a partial representation of these costs. The insights of my analysis

can be relayed by supposing that when observing predecessors, each agent must simply pay a price

to observe a specific predecessor, and has only a fixed ‘link budget’ to spend observing them. To be

precise, the budget constrains the number of links they may observe, and is distinct from the costs

of observing them, which are reflected in the agents’ utility function.

Armed with this model, I find necessary and sufficient conditions for complete learning to obtain,

but more importantly discover comparative statics results that show that increasing our access to

information can reduce the asymptotic accuracy of agents, as I mention above. More specifically, I

find that we can reduce the asymptotic probability with which agents match the true state by giving

them access to unambiguously more informative private signals. We can achieve this by reducing the

cost of observing every subset of predecessors. This establishes that the intuitive claim that making

it cheaper for agents to observe private and/or social information must increase their accuracy is

not true in this setting. The basic intuition behind this fact is that if early agents are made cheaper

to observe to a greater extent than later agents, or if they are given access to much cheaper and

more informative private signals whilst other agents are given only small improvements, this can

change the endogenous observation network to the detriment of information aggregation. In models

of sequential social learning, asymptotic learning is dependent on long information paths - chains

of agents in which each observes their predecessor in the chain - as each agent in such a path can

improve on their predecessors. If we shift the cost parameters such that we move from an equilibrium

in which agents are all choosing to observe recent agents and generating an observation network with

expanding observations to one in which they all choose to observe a very early agent, this prevents

information aggregation. Informational externalities driving breakdowns of learning in sequential

models are as old as the literature itself: in the classic complete network setting (Bikhchandani
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et al., 1992; Banerjee, 1992), agents optimally following their social belief ensures subsequent agents

learn nothing about their private signal. It would be better in such a setting for them to vary their

action with their private signal, thus allowing information to continue to accumulate. In this paper,

these externalities are even more pernicious, as in addition to ignoring externalities when choosing

their action, they also ignore them in choosing what information to observe before doing so.

In addition to this, I also consider how we can model the media landscape within this set-up, and

find that social media can directly cause a collapse in the readership of newspapers. When agents

can too cheaply observe influencers (agents who are not able to conduct private investigations any

more cheaply that their followers), they are easily tempted to do so instead of reading newspapers.

This can produce a situation in which all agents need to conduct their own investigations, achieving

less accuracy at greater cost.

Literature Review: The literature on sequential social learning is substantial, going back to

classic articles by Bikhchandani et al. (1992) and Banerjee (1992). The contribution of Smith and

Sorensen (2000) provides a general analysis of sequential social learning on a complete network,1

nesting much of the earlier work, and was the first to discover the importance of the distinction

between bounded and unbounded beliefs. A number of articles in the sequential literature have

considered costly information before, though none have yet made the observation of neighbors and

private information costly simultaneously. This limitation ensures that none allow the analyst to

evaluate the impact of social media as I do. Burguet and Vives (2000), Mueller-Frank and Pai

(2016), and Lomys (2020) each consider costly private signals, but the articles whose approaches

mine resembles most are those of Ali (2018) and Song (2016). Whereas Lomys and Mueller-Frank

and Pai both allow agents to conduct costly investigation of the pay-off of one risky action, which

they may or may not choose over a certain-payoff safe action, Ali’s model involves a binary state

of the world, agents who wish to match this state, and the availability of costly private signals,

or ‘experiments’, that reveal information about the state of the world. My notion of affordability

follows on from Ali, though my private-signal setting is more general in some ways that require me

to differentiate between affordability and a stronger notion (uniform affordability) that are equivalent

in his setting. My Proposition 2 partially nests his Theorem 1. The major difference between my

paper and his, however, it that I allow general network topologies (a feature my model shares with

that of Lomys), and make it costly to observe predecessors. Conversely, Song (2016) allows free

observation of a private signal but makes the social signal costly and strategic. In his paper, agents

observe a private signal for free before doing anything else2 They then can pay a cost c to obtain

capacity K(n), where once obtained this allows them to observe up to K(n) ∈ N agents. My model

is similar but not the same, as agents have both a link budget, and pay a different price for each

predecessor they might want to observe. Appendix C studies a more general model, and Section

1In which all agents observe all those who came before.
2He does also note that making them choose whether or not to observe a social signal first changes results.

With unbounded signals he finds that there is not complete learning if social signals are not free, but that
there can be with low enough social cost if private signal observation occurs afterwards.
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4 further considers when private and social costs are nonseparable. Song finds that decreasing the

social cost c can improve learning, just as I find here that either increasing social or private costs

can improve learning by changing the properties of the endogenous observation network. As far as I

am aware, no article yet studies a model in which both private and social signals are costly. Nor does

any existing article observe (as I do here) the importance of whether these two costs are separable

or not, or use this as a model of learning with rational inattention.

The standard references of Acemoglu et al. (2011), Lobel and Sadler (2015), Smith and Sorensen

(2000) are ancestors of much of this costly observation literature, and the techniques of these papers

are still of use here as can be seen in the proof techniques I use. I have noted the importance of

Smith and Sorensen (2000) above, but Acemoglu et al. (2011) is important in generalising beyond

the complete network, and allowing for arbitrary social network structures, with the caveat that

agents’ neighbourhoods are independent of each other. In this setting, they find that Expanding

Observations- a minimal connectivity condition- is necessary and sufficient for asymptotic learning

with unbounded beliefs.3 A small literature following Acemoglu et al. (2011) has developed, for

example containing Lobel and Sadler (2015, 2016) and Lomys (2020). The first of these removes

the neighborhood independence assumption of Acemoglu et al. (2011), unlike the model I present

here,4 and the second studies learning in a setting where agents have different preferences over the

two actions. This turns out to be sufficient to break learning in general networks, and some of the

learning problems in my model are reminiscent of it.

In addition to commenting on the relationship of this paper to the literature in sequential so-

cial learning, it will also be worth commenting on that of rational inattention. Rational inattention

has been much studied in political economy already. Matějka and Tabellini (2021) model rationally

inattentive voters, and show that this gives more influence to voters with strong preferences, since

they are correspondingly more likely to pay close attention to issues in which they are very in-

vested. Yuksel (2022) and Hu and Li (2018) demonstrate that rationally attentive voters can cause

political platforms to polarize, complementing the themes of this thesis, and even more pertinently,

Maćkowiak et al. (2023) note that the internet can exacerbate by providing ‘a finer granularity of

information, allowing voters to focus even more on narrow topics of their particular interest.’ The

literature literature linking rational inattention to polarization also includes articles that show how

it can produce the polarization of beliefs directly (rather than simply political platforms), such as

Nimark and Sundaresan (2019) and Novák et al. (2021). This paper does not show rational inatten-

tion producing polarization, but rather shows that in its presence an increase in the availability of

information can paradoxically produce a collapse in agents’ access to information.

3In addition to these articles studying general network topologies with the Acemoglu et al. (2011) frame-
work, there are of course articles such as that by Çelen and Kariv (2004) that study specific non-complete
network topologies such as the line network. I follow the Acemoglu et al. (2011) approach, as real world
networks are inevitably going to contain all sorts of arbitrary patterns, making results on general network
topologies of much more use in studying social learning.

4Note that an implication of this it that motivated reasoning can damage social learning even without type
homophily and echo chambers.

4



An interesting bridge between the the literatures on social learning and rational inattention is

Caplin et al. (2016); this article studies a model of social learning with rational inattention, in which

a continuum of agents enter a market each period and choose between a set of options. Like Ali 2018,

they assume that firms observe social information (the fraction of agents that chose each option in

each previous period) without cost, and assume a complete network, though they do not use networks

terminology to describe this.

Caplin, Leahy and Matějka model the cost of acquiring private information using mutual infor-

mation (the expected reduction in the entropy of beliefs over the state), and this is standard in the

rational inattention literature. It can also be seen in the famous Matějka and McKay (2015) article

microfounding the multinomial choice model as a product of rational inattention; that of Caplin et al.

(2019), which connects the theory of consideration sets and rational inattention based on Shannon

mutual information; and Sim’s seminal 2003 article (Sims, 2003) that first set out the rational inat-

tention model using costs reflecting the mutual information between prior and posterior beliefs. In

their literature review on rational inattention, Maćkowiak et al. (2023) list the use of a cost function

based on mutual information as the third of three defining features of the benchmark model, though

the first two assumptions - that information is available in a wide variety of forms, and that agents

choose information optimally - are the main ones.

Despite this, mutual information costs are not essential, and in my particular setting I believe it

is important to be able to analyze behavior without imposing a specific cost function. To see why,

consider the cost for any agent of observing their immediate predecessor in a symmetric5 environment.

If we assume agents’ cost function for social information is based on mutual information, and agent n

matches the state with probability αn, then the cost an agent will pay to observe the action of their

immediate predecessor could vary wildly as a function of their index. If we intend this cost to reflect

the cost of logging into Twitter or Facebook and observing the last comment, we might reasonably

object to this property, instead wanting the cost of observing n − 1 for n to be the same for all

n in N: mutual information based costs are thus arguably inappropriate here. On the other hand,

why might the αn be higher for higher values of n? In such sequential models as I study here, an

important reason for this is that later agents come with higher probability at the end of long chains

of agents, each observing some predecessor, and this ensures their action ‘reflects’ a large number

of independent signals. Given this, mutual information costs that make higher α neighbours more

costly to observe could be seen as a useful heuristic reflecting the greater cognitive effort required

to think through such a long chain of observations, and what value of αn it implies. This reflects a

specific sequential social learning twist on the classic criticism of rational inattention that it is odd

to suppose agents who face cognitive costs are nonetheless going through the elaborate calculations

required to derive the optimal attention strategy: computing αn can be an absolutely fiendish task

in equilibrium, depending on the exact network structure and available signals. Given that there are

reasonable arguments both in favor of and specifically against mutual information, it is important

5By this I mean the private signal structures available to all agents are symmetric across the two states of
the world.
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to work with general cost functions, and find results that do not depend on their precise form.

The rest of the article is structured as follows. In Section 2 I set out the model, along with

several important concepts concerning the network topology, available private signals, and orders

over these objects. Section 3 presents the necessary and sufficient conditions, among them that

if the network of free-to-observe neighbors has expanding observations and private information is

sufficiently available (overturning information is uniformly affordable) (Proposition 2). Proposition 3

then establishes that a basic condition on private signals is not necessary for learning, and Proposition

4 that without such free neighborhoods we cannot achieve learning even with free unbounded private

signals. More importantly, however, are the comparative statics results in Propositions 5 and 6. Since

the motivation of this paper is to evaluate the impact of the internet on political discourse, these

results on the changes that can result from cheaper signals and observation are the clear results that

have something to say on this. These establish that the impact of the internet is not obvious, but

that it can counter-intuitively reduce asymptotic accuracy to make information and observations

cheaper. In Section 4, I consider how nonseparable information costs could be used to model agents

keeping up with the news via social media news feeds. I note that in this instance, social media could

help learning, and in fact the improvement of off-platform private information (for example via the

development of AI and ChatGPT) could threaten any equilibrium producing complete learning on

this basis. Finally, I consider the impact on the media landscape in Section 5 and find that social

media generates a public good problem in Proposition 7. Section 6 concludes.

2 Model

In this model, I adopt a canonical sequential social learning model with a binary state θ ∈ Θ =

{0, 1}, in which an infinite sequence of agents n ∈ N arrive and must make an irreversible action

choice xn ∈ {0, 1} in order to maximise their expected utility, with utility function:

un(xn, θ) =

1 if xn = θ,

0 if xn ̸= θ,

Each agent n can buy a single experiment,6 Xn, from a finite set of experiments E at a price

given by the private cost function CP
n : E → R+. Each agent’s private cost function is drawn

from a distribution over cost functions by nature at the beginning of their turn CP
n : E → R+ ∼

∆P
n (RE

+). I normalise the realizations of all experiments to the posteriors they induce, and assume

that all available experiments are informative but never perfectly so (they are mutually absolutely

continuous). I assume there is a uniform common prior for convenience; this assumption is without

loss.

As I have noted in my introduction, the model I study here is a simple implementation of a much

more general model, that sacrifices some of its richness for greater parsimony. The model of the main

6I shall refer to these as either experiments or private signals as convenient.
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body of this text is rich enough to replicate all the results I have established in my more general

model, in a vastly less complicated framework. I discuss this more general model in Appendix C.

In models of social learning in which the observational network is exogenous, there is no need to

distinguish between different notions of the network topology. Here, however, this is not the case: each

agent n chooses his own neighborhood B(n). In this model there will be three important elements to

the social costs: (1) all agents can form at most L links; (2) each agent i will have to pay cost cij to

observe any predecessor j, and the vector of individual costs for each predecessor will be drawn from

a distribution ∆S
n(Rn−1

+ ); (3) the cost of observing a set B of predecessors is simply the sum of the

individual observation costs for each agent in B, thus the cost of observing any subset of predecessors

is completely determined by this vector of realized costs Ci. For the sake of this present paper, I can

assume that all agents face the same link budget L, though all results hold in the more general model,

which is also more general than would even be represented by giving each agent their own individual

L. L can take any value within N∪{∞}, where setting L = ∞ and studying a degenerate distribution

of network costs where each cost is equal to zero with probability one gives the benchmark complete

network.

Definition 1 (Social Cost Structure). The social cost structure of a given game is the sequence of

all agents’ social cost vector distributions: ∆S = {∆S
n}n∈N and the universal link budget L.

The ‘network topology’ is then an endogenous object, precisely I call it the Endogenous Obser-

vation Network Topology for Equilibrium σ, {{Qn
σ,θ}θ∈Θ}n∈N. This is the sequence of pairs (one for

each state) of neighborhood distributions induced by the social cost structure and strategy profile in

equilibrium σ. One network topology is strictly more cheaply connected than another, if each indi-

vidual cost cij is lower with probability 1 for all i and all j, and the link budget of the two is the

same.

The timing of each agent’s turn is as follows: agent n arrives in the game, and may choose either

to observe a private signal Xn ∈ E , some subset of his predecessors B(n) ∈ 2{1,...,n−1}, or nothing.

In the case he chooses to observe nothing, agent n simply selects his irreversible action xn ∈ {0, 1}
and his turn ends. Otherwise, if he observed a private (social) signal, he updates his belief to form

an interim belief. He can then choose to either observe a social (private) signal, or nothing at all. If

the latter, again he chooses xn ∈ {0, 1} and ends his turn; if the former he updates his interim belief

to form a final posterior belief, and chooses his action to end his turn.

I denote the action-history of the game up to and including agent n as hn := {x1, ..., xn}.
The equilibrium concept I use here is Perfect Bayesian Equilibrium, and equilibrium existence is

straightforward to establish as is standard in such models.

Proposition 1 (Equilibrium Existence). A Perfect Bayesian Equilibrium exists.

Proof. See Appendix B.

Finally, the major outcome of interest in this game is whether or not Complete Learning obtains:

7



Definition 2 (Complete Learning). Complete learning obtains in equilibrium σ if xn converges

to θ in probability (according to measure Pσ), i.e. if limn→∞ αn = 1.

2.1 Affordability

Following Ali (2018), it is necessary to introduce the concept of affordability to analyse this

environment. A given experiment X ∈ E is affordable for agent n if for any k ∈ R+ there is strictly

positive probability that n can afford experiment X on a budget of k, i.e. ∆P
n (C

P
n (X) ≤ k) > 0.

Information is said to be affordable for n if there exists some experiment X ∈ E that is affordable,

and we say that overturning information is affordable for n if for every b, b ∈ (0, 1) with b < b

there exists both an affordable experiment with support extending above b, and one with support

extending below b. If information is not affordable for n it is unaffordable for n, and similarly if

overturning information is not affordable for n it is also unaffordable for n.

An important difference between this setting and that of Ali (2018) is that agents are not assumed

to be homogeneous in their access to private information here. I thus introduce another concept,

uniform affordability, that is equivalent to affordability in the setting of Ali (2018). Information is

said to be uniformly affordable for a set, A, of agents if there is some common distribution over

cost functions ∆S(CP (X)) such that for any n ∈ A we have that for any k ∈ R+, ∆
P
n (C

P
n (X) ≤

k) ≥ ∆P (CP (X) ≤ k) > 0. Naturally, one can also speak of overturning information being uniformly

affordable for a set of agents. In Ali (2018), if information is affordable, it is uniformly affordable for

the set N.
In addition to defining affordability, it will also be useful to define an order over experiment set-

cost function distribution pairs. This shall be that one experiment set-cost function distribution pair

shall be Blackwell-preferred to another for agent n if we can define a pair an injective functions, FE ,

from the latter to the former such that every experiment-cost function {X,CP
n (X)}, X is Blackwell-

dominated by its corresponding experiment, FE(X), and costs less with probability 1.

Definition 3 (Blackwell-Preferred Experiment Set-Cost Function Distribution Pairs ⪰B). One

experiment set-cost function distribution pair {E1,∆P,1
n (·)} is Blackwell-Preferred ⪰B to another

{E2,∆P,2
n (·)}, {E1,∆P,1

n (·)} ⪰B {E2,∆P,2
n (·)}, if there exists an injective function FE such that

FE(X2) ∈ E1 for any X2 ∈ E2, FE(X2) ⪰B X2, and ∆P,1
n (CP

n (FE(X2)) < CP
n (X2)) = 1 where

CP
n (X2) is the lower bound of the support of the cost of experiment X2 according to ∆P,2

n .

3 Necessary and Sufficient Conditions for Learning

In what circumstances should we expect learning to occur, and to what extent? A basic necessary7

condition for learning that is ubiquitous in this literature is expanding observations, which guarantees

that early agents do not have too much influence asymptotically. We must adjust this condition to

reflect that observation networks are endogenous in this context, which produces the following:

7It is also sometimes sufficient with unbounded private signals, for example in Acemoglu et al. (2011)
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Condition 1 (Expanding Observations). In equilibrium σ, the network topology satisfies expanding

observations if for all θ ∈ {0, 1}, and any K ∈ N:

lim
n→∞

Qn
σ,θ

(
max
b∈B(n)

b < K

)
= 0

Where I adopt the convention that maxb∈B(n)b = 0 if B(n) = ∅.

Much as it is useful in this framework to speak of different varieties of network topology, it is

also useful to define multiple versions of expanding observations. In particular, I will describe a given

network topology as exhibiting c-expanding observations if it would satisfy expanding observations

were every link with cost cij < c to be present.

Condition 2 (c-Expanding Observations). Let {Wc
n}n∈N be the sequence of distributions over graphs

that result from adding a link between every pair of agents i and j (i > j) connected by observation

cost cij < c, but adding no others. The network topology satisfies c-Expanding observations if:

lim
n→∞

Wc
n

(
max
b∈B(n)

b < K

)
= 0

Firstly, it is natural to consider the benchmark cases in which only one of private and social

signals have non-zero costs. If observing some neighbors is actually free, what conditions on private

signals guarantee learning and vice versa? If agents all observe the complete network for free, we

know from Ali (2018, Theorem 1, Part 2) that if overturning information is uniformly affordable for

all agents,8 then complete learning obtains, and if it is unaffordable for all agents we have incomplete

learning.9 The first aspect of this can be generalised in this setting, as I show in Proposition 2, though

unaffordable overturning information does not guarantee that complete learning does not obtain.

Proposition 2. If we have 0-expanding observations, and overturning information is uniformly

affordable for N, complete learning obtains.

Proof. See Appendix B.

The 0-expanding observations and uniformly affordable overturning information ensure that we

can apply an improvement principle. Where in standard improvement principles agents can improve

on any neighbor, here we instead consider them improving on one of their freely-observable neighbors

specifically. The uniformly affordable overturning information allows us to mimic the free unbounded

experiment agents are normally assumed to observe. That we need uniformly affordable overturning

information is not obvious, since in Ali 2018 this concept is not defined, and it would be natural

8Since he does not have the notion of uniform affordability defined, his result is expressed in terms of
affordability

9In Ali’s paper, complete learning is defined as obtaining if the public belief almost surely converges to
certainty on the true state, whereas here it is defined as convergence in probability to the correct action.
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to try and extend Ali’s result by instead simply insisting that each agent has access to affordable

overturning information. This is not sufficient, however, and I illustrate this fact in the following

remark.

Remark 3.1 (Importance of Uniformly affordable overturning information). If we replace

‘overturning information is uniformly affordable for N’ in Proposition 2 with ‘all agents in N
have affordable information’, the result no longer holds.

Proof. See Appendix B.

The problem here is that we can conceive of information cost structures such that though each

individual agent n has affordable overturning information, the probability with which they can afford

such overturning information converges to zero fast enough to prevent the accuracy of agents αn ever

converging to 1. In the proof of Remark 3.1 I consider one particular example in detail, where the

probability with which private information is cheap enough to be worth observing goes to zero at

an exponential rate as the index of agents climbs. I plot this alongside an example in which this

probability converges linearly to zero in Figure 1. Figures 1a and 1b show the same curves, though

the former plots them over a very large domain to exhibit the limit, and the latter shows only the

first five agents to show that both curves are gradually increasing, though it may not seem so looking

at 1a.

(a) Path over the first million agents (b) Path over the first five agents

Figure 1: Figure 1: In the scenarios represented by both of these curves, agents all have access
to affordable overturning information, but nonetheless they do not learn.

Though uniformly affordable overturning information can ensure complete learning, it is not nec-

essary for it. We can instead achieve learning with sacrificial lambs for whom observing predecessors

is prohibitively expensive.

Proposition 3 (Necessity of Affordable Information). Uniformly affordable overturning information

for N is not necessary for complete learning to obtain, though affordable information is. Even if no

agents have affordable overturning information, complete learning is still possible.

10



Proof. See Appendix B.

Having considered under what conditions on private signals we get learning with 0-expanding

observations, we can also ask in which network topologies we get learning when agents are all as-

sumed to have access to one free unbounded private signal. Clearly, by Proposition 2, 0-expanding

observations is sufficient here since with this private signal structure all agents have uniformly af-

fordable overturning information, but it turns out that the moment we dispense with 0-expanding

observations and impose minimum observation costs with some probability, even free unbounded

signals are not enough to achieve learning.

Proposition 4. If there exists some c > 0, δ > 0 such that all neighbors cost at least c to observe with

probability at least δ, we do not have complete learning if E = {X1} where X1 is a free, unbounded

signal. Hence, uniformly affordable overturning information is not sufficient for learning without

0-expanding observations. Furthermore, to ensure that there is not complete learning it is sufficient

that for infinitely many agents, with at least probability δ, that they cannot observe any neighbors

cheaper than c > 0. That the above condition holds for all agents is not necessary.

Proof. See Appendix B.

To see the intuition for this result, consider the simpler statement that if all agents must spend

at least c to observe any neighbor, and have access to E = {X1} where X1 is a free, unbounded

signal, then there is not complete learning. This follows from the fact that agents with access to only

a single free, unbounded signal will necessarily observe it before observing any social signal, and that

for some private signal realizations will choose not to observe the social signal. This ensures that

with some probability every agent manages to match the state only with a probability bounded away

from 1.

3.1 Comparative Statics

Beyond establishing under what conditions we should expect learning, we can now consider

some comparative statics. Given our desire to understand what the effect of the internet will be

on social learning when agents are rationally inattentive, we should clearly seek to know whether

making networks either more connected or less connected, or increasing or decreasing agents’ access

to private information, will straightforwardly improve or damage the asymptotic accuracy of agents.

Unfortunately, we answer this question in the negative: increasing or decreasing either the level of

connectivity or access to private information can both increase and decrease the asymptotic accuracy

of agents. The impact of the internet is thus not evident in such a model, and will require more

assumptions on the exact nature of the network topology before and after the internet. Firstly, I

consider the impact of making the network topology more or less connected in Proposition 5.
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Proposition 5 (Network Topology Comparative Statics). Making the network either strictly less or

strictly more cheaply connected can reduce the asymptotic probability with which agents match their

action to the state.

Proof. See Appendix B.

In this proposition, I use two examples to demonstrate that increasing the connectivity of the

network can either increase or decrease asymptotic accuracy (and thus decreasing it can do the same).

Figure 2a illustrates a scenario in which increasing connectivity increase asymptotic accuracy, and

Figure 2b the opposite.

(a) The blue line here is with c = 0.15,
and the orange c = 0.2.

(b) The blue line here is with c = 0.15
before free links to agent 1 are added,
and the orange after.

Figure 2: Greater connectivity can help or hinder.

In the first example, I take a setting in which agents have free access to a fixed, unbounded

private signal. I also assume agents have a link budget of L = 1, and can pay price c to observe their

immediate predecessor, but must pay a price greater than 1 to observe others. Given the specific

private signal structure I assume, I show that agents will only choose to observe their predecessor if

this cost is below 0.25, c ≤ 0.25, and that below this point decreasing the cost of observing immediate

predecessors smoothly increase asymptotic accuracy: α = 1 − c. Above c = 0.25, there is no social

learning at all, and all agents perform exactly as well as the first.

Whilst this example establishes that increasing connectivity can help asymptotic accuracy, that

of Figure 2b shows the opposite. Taking the setting of our first example with c = 0.15 as a starting

point, I then suppose that each agent can observe the first agent of the game for free (though the

link budget prevents them observing both this agent and their immediate predecessor). Courtesy of

this, agents are tempted away from observing their immediate predecessor, which imposes negative

informational externalities on all following agents: where before this change every agent could choose

to observe the last element of an information path containing n−1 agents, now they can either freely

observe an information path of length 1, or pay c to observe one of length 2. Asymptotic accuracy

drops from 0.85 to 0.8125.
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Both of these examples are defined such that the accuracy of agents does in fact converge, but

this is of course not necessarily going to be the case in an arbitrary network topology. In fact, by

merging the two examples above one can easily create a game in which one subset of agents benefits

as the network topology becomes more connected whilst the other becomes worse off. To see this,

take the first agent (who faces the same information environment in all cases), and make him the

first agent of a new game. Then, let each successive agent in the game of Figure 2a have the lowest

even index remaining, and similarly let each agent in Figure 2b have the lowest odd index remaining.

One can choose the social cost vectors such that agents in the first set never observe agents in the

second and vice versa. Then, moving from the first scenario in each example to the second involves

making the network topology strictly more cheaply connected, and producing a higher accuracy for

all even-indexed agents, whilst ensuring a lower accuracy for all sufficiently late odd-indexed agents.

Hence, it is clear that the consequences of making the network more connected will very much depend

on the details of the environment.

Proposition 6. Providing every agent with a strictly Blackwell-preferred experiment set-cost function

pair can increase or decrease the asymptotic probability with which agents match the state.

Proof. See Appendix 6 .

(a) In this example the blue curve dis-
plays a scenario in which agents all have
a strictly strictly Blackwell-preferred ex-
periment set-cost function pair to that
of the orange curve. Here this improves
accuracy, allowing complete learning in
the higher-information case, but limited
learning in the lower-information case.

(b) The blue line here shows the path of
accuracy in a scenario where every agent
has a strictly Blackwell-preferred exper-
iment set-cost function pair to that of
the orange line, and identical network
topologies. Learning is damaged here as
agents end up all observing only the first
agent.

Figure 3: More informative signals can help or hinder.

Finding an example in which increasing the access agents have to private information improves

the asymptotic probability which they match the state is relatively straightforward. If we assume

a network topology such that agents can only observe their immediate predecessors, this rules out

any problem with agents switching to observing exclusively early neighbors. The specific example I

13



use to establish the first part of this proposition is one in which agents can observe their immediate

predecessor for free, but are unable to observe anyone else. In such a setting, it is easy to make

asymptotic accuracy increase as we move to Blackwell-preferred signals, as if we give agents access

to a bound signal in the first instance, but move to an unbounded Blackwell dominant signal structure

in the second, it is clear that asymptotic accuracy will improve (from being strictly below 1 to 1

itself). In Figure 3a I show the accuracy paths that one can generate doing this.

Conversely, when the network topology is more flexible, the implications of improving agents’

private signals are no longer unambiguously good. Figure 3b shows an example in which increasing the

informativeness of all agents’ signals leads to a lower level of asymptotic accuracy, precisely because

it pushes the game away from an equilibrium which produces an observation network with expanding

observations, to one which doesn’t. Precisely, I choose a set-up here in which agents can either observe

the first agent of the game free of charge, or their immediate predecessor at cost 0.15 (again with a

link budget of L = 1). I provide agent 1 with a Bernoulli signal, and all other agents with unbounded

signals {f0(s), f1(s)} = {2(1 − s), 2s}; this yields the equilibrium represented by the orange line in

Figure 3b. If we then increase the informativeness of agent 1’s Bernoulli trial, whilst also giving all

other agents a Blackwell-preferred signal structure (but one that is only marginally better) we can

shift them from the immediate predecessor equilibrium to one in which all agents after n = 2 choose

instead to observe agent 1. Whilst each agent is individually better off than if they had observed

their immediate predecessor, these decisions together inflict a negative informational externality on

the society since they prevent information ever accumulating. The endogenous observation structure

is thus absolutely key to these comparative statics, and demonstrates the value of modelling these

costs, and doing so in such general terms.

A broad conclusion we can draw from propositions 5 and 6 is that the impact of the internet on

learning is not obvious with rationally inattentive agents. A general model does not allow us to make

unambiguous statements about the consequences of our ever easier access to information, and more

and more connected online discussion and social networks. In order to comment on the consequences

of this, we will need to commit to a more specific model, and so in the next section I set out such a

model of the information environment. Through this, I comment on the likely effects of the internet

on the media landscape, and explain recent trends in opinion vs news journalism.

4 Social Media and Nonseparable Information Costs

The model of this paper assumes that searching for private and social information are separate

activities, and hence that the attention costs of conducting them are separable. However, particularly

in the world of social media, one could argue that they can be conducted simultaneously. There is

evidence that, as is frequently observed in the media and our political discourse, that many people

actually get their news from social media websites in the first instance. Pew Research Center polling

from September 2025, for example, shows that at least 53% of Americans get at least some news

from social media (PRC, 2025).
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If this is the case, one could imagine that choosing to observe a private signal in reading one’s

newsfeed might make it very low cost to then observe what other agents have said on the topic of

interest. Indeed, perhaps in some circumstances one can argue that searching for private information

in this fashion makes observing the statements of others inevitable. In such a world, one could model

the cost of observing a social signal conditional on having observed a particular private signal as

being different to the cost of observing it alone.

Suppose we augment our model by supposing that in addition to private and social signals,

agents can choose instead to observe a joint signal, for example {xn−1, {f0(s), f1(s)}}, which involves

observing their immediate predecessor and an unbounded private signal. Using Proposition 2, we

can see a new path to complete learning. If this joint signal is sufficiently attractive (relative to the

separate social and private signals that are available) that all agents will choose to observe it, then

it produces both a network with expanding observations and provides unbounded private signals.

Hence, it will produce learning.

What’s more, we could see a threat to learning via any such channel in the improvement of

separate social or private signals alone. If at one point in time agents are all consuming joint signals

and this produces learning, but we then increase the quality of private signals, perhaps by inventing

ChatGPT and increasing the effectiveness of search off social media, then in equilibrium agents may

no longer consume the joint signal. Just as with Proposition 6, improving private signals alone can

ensure that the equilibrium network no longer exhibits expanding observations. This would ensure

the high-quality social signals available to high-index agents in the initial equilibrium will no longer

exist, since agents along the relevant improvement path will simply have engaged in private search

instead.

Many of the results of this paper, and indeed of Section 5 next, suggest that social media likely

has a negative impact on social learning. This section raises a notable counterpoint to that. As

I have discussed, with nonseparable costs of information one could even envisage a golden age of

social-media-based social learning being broken by the advent of AI-enhanced private search.

5 The Internet, Influencers, and a Changing Media Land-

scape

Here we can think of a model in which the first M agents are newspapers. They conduct private

investigations (a private signal of a certain cost), but are unable to observe each other since they

publish at the same time. Then the following agents are people, who can observe newspapers for a

price, but also each other. To represent the impact of the internet, I will consider the consequences

of moving from a set-up in which it is extortionately expensive for individuals to conduct private

investigations, and even observe each others’ opinions on the true state, to one in which both private

investigation and observing predecessors become cheaper.

I will suppose that the media companies are capable of of either conducting an investigation
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(a Bernoulli trial with success parameter qI) or not reporting at all {I, ∅} at costs {cI , 0} where

0 ≤ qI < cI (the cost of the report is more than its value to a single agent, and multiple agents must

observe it before it is worthwhile to produce). I will model media company j as making an expected

revenue of
∑∞

n=M+1 δ
n−MpjI(j ∈ B(n)), where δ ∈ [0, 1] reflects the probability with which the game

will end each period (the news cycle will move on, no more agents will search this hashtag). Suppose

that agents can conduct an individual Bernoulli experiment {X1} with success parameter qX , but

that initially the cost of doing so is extortionate: CP
n (X1) > 1 for all n > M . In the language of my

broader model, E = {X1, I}, Cn(I) = cI for n ≤ M . Agents must pay a price pm to observe media

company m ∈ {1, ...,M}, in addition to any cognitive cost, so the total cost of doing so is strictly

greater than pm + pm−1. For the sake of parsimony, let us suppose that the entire cost of consuming

a newspaper report is simply its price, and that this cost is therefore additive, and moreover let

us set the link budget to infinity. I suppose that the media companies cannot observe each other

cm,m−j = ∞ for m ∈ {1, ...,M}, j ∈ {1, ...,m − 1}. I solve for the Perfect Bayesian Equilibrium of

this game and discuss how it changes as we adjust parameters to reflect the advent and development

of the internet.

The immediate impact of the internet was to make searching for information much cheaper and

easier than it was before, so in this model its first consequences will be reductions in CP
n (XI) and

cI . The advent of social media shall instead reduce the cost of observing predecessors.

Definition 4 (Stages of the Development of the Internet). I divide the history of the internet into

the following stages:

1. Pre-Internet: CP
n (X1) > 1 for all n > M , cI = cI(0), neighbor observation costs are above 1

for all agents.

2. Early Interneta: CP
n (X1) = CP (X1) < qx − 0.5 < 1b for all n > M , cI = cI(1) < cI(0),

neighbor observation costs are still above 1 for all agents.

3. Post Social Media: neighborhood observation costs decrease, so that each agent can cheaply

observe either recent predecessors, or influencers (early agents observed by all or many

successors), or both. For simplicity, set these costs to zero: cn,n−1, ..., cn,n−j = 0 or

cn,M+1, ..., cn,M+#Influencers or both; all other observation costs remain the same.

aCrucially this represents the internet before Social Media comes about.
bWithout this condition the agents prefer to observe no information anyway, and this stage is identical to

the Pre-Internet Stage.
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Proposition 7. If M = 1, the following are true:

1. In the Pre-Internet stage, the newspaper investigates and agents all read the report if cI ≤
δ

1−δ (q − 0.5), and agents match the state with accuracy qI > 0.5. Otherwise agents receive no

information, and their asymptotic accuracy is αn = 0.5 for all n. If they report, the newspaper

sets its price at p1 = qI − 0.5.

2. In the Early Internet stage: the newspaper investigates if cI ≤ δ
1−δ ((qI − qX) + CP (X1)) and

charges price (qI−qX)+CP (X1). Agents have accuracy qI if the report is produced (and strictly

positive consumer surplus), and accuracy qX otherwise (and positive consumer surplus).

3. In the Post Social Media stage: The media company conducts no investigation, agent n = 2

observes a private experiment, and all following agents copy his action after observing him

either directly or indirectly. Their accuracy is qI .

Proof. The Pre-Internet Equilibrium: In the first instance, no consumers will conduct their own

private investigations or observe any neighbors, since these are so expensive. Either they will consume

no information at all, or they will read the newspaper if the cost of doing so is cheap enough, i.e. if:

EU(B(n) = {1}) = 1× αNews(n)− p1 ≥ 0.5

The news company will choose to conduct an investigation if their expected revenue is higher than

cI :
∞∑
n=2

δn−1p1I(1 ∈ B(n))− cI ≥ 0

∞∑
n=2

δn−1p1I(q − p1 ≥ 0.5)− cI ≥ 0

Where I use that if the news company chooses to investigate and observes a Bernoulli signal, and

chooses xn = ς to communicate this information in its news report, the success probability of agents

reading this report will be q. Clearly the news organisation will choose p1 = q−0.5 in any equilibrium

where they choose to investigate, since this maximises their profit whilst ensuring that all agents

consume the news report. Their profit in the event they investigate will then be:

∞∑
n=2

δn−1(q − 0.5)− cI =
( 1

1− δ
− 1
)
(q − 0.5)− cI

The media company investigates if cI ≤ δ
1−δ (q − 0.5), where the RHS is increasing in δ and q.

The Early Internet Equilibrium:

The advent of the early internet can give agents a better outside option than before. Agents

will never consumer observe both their private experiment and the news report. If qX > qI , and

the agent knows that upon observing the outcome of qI (which will produce a posterior they can
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anticipate, and which is symmetric) they will want to consumer X and follow that, it is dominant

strategy to skip the media investigation and observe X1. If qX > qI the reverse is true, and if qX = qI

observing a second piece of information will either put them in the position of indifference between

the two actions (in which case they may as well have chosen the action recommended first and spared

themselves the price of the second piece of information), or will simply confirm what they were going

to do anyway.

Therefore, in equilibrium the media company will either price its report such that agents consume

it instead of their signal, or choose not to produce one at all. The equilibrium therefore involves

individuals choosing to read the report, and the media company choosing its price such that:

qX − CP (X1) = qI − p1

p1 = (qI − qX) + CP (X1)

The media company then makes profit δ
1−δ ((qI − qX) + CP (X1)) − cI , and thus produces the

report if this is greater than 0. Agents again have accuracy qI if the report is produced, and qX

otherwise.

The Post Social Media Equilibrium:

The Social Media Stage ensures that once agent has read the news report (if one is produced),

all following agents will observe either them or their immediate predecessor to learn the action

recommendation of the report. Hence the media company cannot sell to more than 1 agent, and

since cI > qI , this is not enough to produce a positive profit. The media company does not report,

and agent n = 2 conducts his own investigation and all following agents observe him (directly or

indirectly, for the newsfeed and influencer networks respectively). If individuals are less effective than

the media at investigating, all agents are less accurate.

There are a number of points that merit discussion here. Firstly, the conclusion of this result is

that, in the monopoly case, the advent of the internet is good for consumers, since it prevents the

monopoly extracting all of the surplus that their report generates. It can, however, reduce the overall

accuracy of agents if their private investigation is less informative than the media report, and cheap

enough to make the media company’s business model unviable. The advent of social media, however,

is clearly negative in this model. The ability to share the media report’s action recommendation

takes a non-rivalrous good, the information in that report, and renders it non-excludable as well: i.e.

it creates a public good problem. Since agents can no longer be made to pay for the media report, it

is no longer produced, and the consumer surplus and accuracy of all agents drop.

It is also worth noting that ‘failing to report’ in this model is not necessarily analogous to news

companies going out of business, though it could be. Another interpretation, given that in reality

agents also read newspapers for entertainment and the satisfaction of opinion journalism, is that the

media company simply stops producing a good with any informational value. News divisions could
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be shuttered in favour of commentary that appeals to the political bent of readers. Noticing the

relevance of ideology to the decision of which newspaper agents choose to read, this also suggests the

monopoly setting is more relevant to the real world than it might seem: if the Wall Street Journal

and the New York Times are the two newspapers available, and Republican and Democratic readers

dislike to see non-congenial commentary, each newspaper could be thought of as playing the above

monopoly game within their own political tribe.

The basic problem here is in some senses robust to the nature of the social network. Firstly, it

does not matter if agents are connected to each other in some sort of line (reflecting a series of agents

reading their newsfeeds as I suggest above), or something closer to a start network in which agent

n = 2 is playing the role of an influencer. Were these agents not to form a connected graph, this would

increase the revenue of the media company (if agent 300 is not connected to any of his predecessors,

he will buy the report), but it would still be much lower than its pre-social media revenue. Similarly,

the complete collapse of their readership depends here on the fact that I have assumed that social

observation costs are exactly zero, and this is an extreme assumption. However, were I to relax this,

and simply place a very low cost of these observations, this would still ensure that the newspaper

would need to price below the cost of observing a single neighbor. For example, if an agent would pay

one dime to avoid the trouble of logging into Twitter, this is as much as the newspaper can charge.

δ and cI would not need to take high values before the same market collapse occurs here as well.

If we take higher values of M , and suppose that media firms choose their strategies simultaneously

(since sequential moves on behalf of these companies seems a little artificial), what will remove the

ability of the monopolist in the pre-internet stage to extract the entirety of the surplus a single report

produces. This implies that the impact of introducing the early internet will not be so beneficial, but

does nothing to prevent the public goods problem that comes with the social media. Finally, we can

also observe here that whilst in this model individuals would be rational in observing an influencer

who had observed a newspaper report, the same breakdown in investigation incentives will occur if

agents simply misperceive influencers as having more information. Proposition 7 demonstrates that

even without people particularly valuing the opinions of influencers, their presence can still cause

this collapse.

6 Conclusion

That individuals have greater access to information than ever does not imply that they are

consuming more of it. In this article, I have considered the implications of Rational Inattention for

social learning on the internet. Even in a setting in which agents are otherwise completely rational,

I have shown that reducing the barriers to searching for information and observing that shared by

others does not necessarily produce equilibria in which agents match the state with higher probability.

Whilst it is possible that reducing these costs leads to agents achieving higher accuracy asymp-

totically, Propositions 5 and 6 establish that we can see the exact opposite of this: giving agents

access to strictly more informative private signals, and making the network topology unambiguously

19



more connected, can in fact reduce the amount of information agents observe. As influencers become

easier to observe or more informative, the incentive to observe them instead of more recent agents

can impede the formation of the large connected observation networks necessary for information

aggregation to take place. This holds even in a model of rational agents with a correctly specified

model of the world, and as I have noted, if in reality agents misperceive influencers as being more

informed than they in fact are, such problems will be all the more severe.

Moving beyond a model of information aggregation in the standard social learning mould, I

have also shown that the development of the internet and social media can create a market failure

in the media industry. By transforming news reports in a sort of public good, the ability to share

their information content on social media can cause the equilibrium readership of such companies

to collapse, as I show in Proposition 7. A move away from investigative to opinion journalism can

be interpreted as a symptom of this. With rationally inattentive agents, in short, Huxley’s dystopia

carries the day.
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A Useful Lemmas

The first two lemmas here reproduce important results in Acemoglu et al. (2011), which I also

use in Cremin (2023, 2025). In Acemoglu et al. 2011, each agent is endowed with the same private

signal and an exogenous neighborhood; here, therefore, they do not directly apply. There are some

examples I construct in this paper where they do apply almost directly, as I give agents only a single

private signal and a choice of only a very limited variety of neighborhoods.

Lemma 1 (Acemoglu et al. Proposition 2). Agent n will choose xn = 1 upon observing

neighborhood B(n) and private signal sn if:

P
(
θ = 1|B(n)

)
+ P(θ = 1|sn) > 1

Proof. See (Acemoglu et al., 2011, Proposition 2).
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This next lemma is (Acemoglu et al., 2011, Lemma 1), and gives several useful properties of the

belief distributions.

Lemma 2 (Acemoglu et al. 2011 Lemma 1). The private belief distributions, G0 and G1,

satisfy the following properties:

(a) For all r ∈ (0, 1), dG0(r)/dG1 = (1− r)/r

(b) For all 0 < z < r < 1, G0(r) ≥ ((1− r)/r)G1(r) + ((r − z)/2)G1(z)

(c) For all 0 < r < w < 1, 1−G1(r) ≥ (r/(1− r))(1−G0(r)) + ((w − r)/2)(1−G0(z))

(d) The term G0(r)/G1(r) is nonincreasing in r and is strictly larger than 1 for all r ∈ (β, β)

Proof. See (Acemoglu et al., 2011, Lemma 1).

This next lemma is a result I derive in Cremin (2023) for my model of motivated reasoning. Here

it is useful in examples where I provide either a single free neighborhood, or at least give agents a

very limited choice of neighborhoods:

Lemma 3 (Bayesian Social Belief Distribution Relationship). If the Bayesian social belief of

agent n in state θ has PMF hnθ (·), they obey the following relation:

hn1 (SBn)(1− SBn) = hn0 (SBn)SBn

Proof. This follows almost exactly the proof of (Acemoglu et al., 2011, Lemma A1 (a))- adjusted in

necessary ways. By then definition of a Bayesian social belief, we have for any sbn ∈ (0, 1):

P(θ = 1|SSn) = P(θ = 1|SBn)

Using Bayes’ Rule, it follows that:

SBn = Pσ(θ = 1|SBn) =
Pσ(SBn|θ = 1)Pσ(θ = 1)∑1
j=0 Pσ(SBn|θ = j)Pσ(θ = j)

(*Note this differs from the analogous expression in Acemoglu et al. (2011) since there are only a

finite number of possible Bayesian social beliefs at any point.)

SBn =
Pσ(SBn|θ = 1)

Pσ(SBn|θ = 0) + Pσ(SBn|θ = 1)

Pσ(SBn|θ = 1) = [Pσ(SBn|θ = 0) + Pσ(SBn|θ = 1)]SBn
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Using the notation that hnθ is the probability mass function for the Bayesian social beliefs of agent n

in state θ:

hn1 (SBn)(1− SBn) = hn0 (SBn)SBn

B Omitted Proofs

Proof of Proposition 1. An agent makes at most three decisions in sequence: (1) to observe a private

(social) signal, (2) to observe a social (private) signal, and (3) to choose xn ∈ {0, 1}; he can simply

choose xn after observing either just one signal, or no signal at all. If he observes a private signal

in the first sub-period, he has a finite set of social signals to observe (since he has a finite number

of predecessors, and thus the power set is also finite), each of which implies an expected value for

his decision problem, as well as the option to choose xn straight away. The finite set of options

guarantees the existence of an optimal action. If instead he chooses to observe a social signal first,

he can again observe one of finitely many private signals (this is finite by assumption), each of which

implies an expected value for his decision problem. In the first sub-period, he can choose amongst

finitely many private or social signals, each of which has an expected value implied by the optimal

second stage choice for each possible signal realization. Hence an optimal strategy always exists.10

There is no strategic interaction in social learning games, so recursively applying the above

argument establishes equilibrium existence.

Proof of Proposition 2. To prove this, all that is necessary is to establish that standard improvement

principles can apply here (that from Acemoglu et al. (2011) is the template I have in mind). There

are two differences that must be addressed:

1. The assumptions on the network topology are in terms of the neighborhood of zero cost agents.

2. Agents do not have free access to a single free unbounded signal.

For the first, the adjustment to be made is straightforward: whereas standard improvement

principle involve agents improving on the best performing agent in their neighborhood, here we must

think of them improving on the best neighbor that they can observe for free. Where Acemoglu et

al. prove an ‘Information Monotonicity’ Lemma in which agents must outperform the best of their

neighborhood B, here they must outperform the best of B0, where this includes only free agents:

Pσ(xn = θ|B0(n) = B0) ≥ max
b∈B

Pσ(xb = θ)

10Which tie-breaking rule agents use when different strategies given the same expected utility is unimpor-
tant; we can assume they uniformly randomise between them.
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For the second, for any level of accuracy β ∈ [0.5, 1), we can apply the standard improvement

principle to show that accuracy must grow beyond that β. To do this, we can simply note that there

is at least some (unbounded in the ‘overturning direction’) private signal that provides over-turning

information for any binary social signal of strength β that is uniformly affordable (by the assumption

of uniform affordability). This may not be the same signal for xb = 0 as xb = 1. Let pS > 0 be the

minimum probability with which an agent observes the relevant over-turning private signal given

the value of xb (note that this is conditionally independent of the value of their chosen predecessors

action, and that uniform affordability tells us that this is strictly positive). In this instance, they will

do at least as well as an agent observing a signal that produces the value #N/A with probability

1−pS , and realises the relevant overturning private signal with probability pS : the available signal is

necessarily unbounded.11 Equipped with this translation, we can see that the standard improvement

principle argument in Acemoglu et al. 2011 ensures that αn →n α > β, and that since this is true

for arbitrary β ∈ [0, 1), this establishes that αn →n 1.

Proof of Remark 3.1. As I note in the main text, the problem here is that we can conceive of informa-

tion cost structures such that though each individual agent n has affordable overturning information,

the probability with which they can afford such overturning information converges to zero fast enough

to prevent the accuracy of agents αn ever converging to 1. To see this, consider the following scenario.

Let agents exist in a line network, where each agent can certainly observe their predecessor

for free, but would have to pay more than 1 (their entire possible payoff) to observe anyone else.

Suppose that the set of experiments available to agents is E = {X1} where X1 has density functions

{f0(ς), f1(ς)} = {2(1− ς), 2ς}. Assume further that with probability 1
en agent n can observe X1 for

free, and with probability 1 − 1
en it costs more than 1: ∆n

P (C
n
P (X1) = 0) = 1

en and ∆n
P (C

n
P (X1) =

0) = 1
en . Note that in this set-up overturning information is affordable for each agent, since for any

social belief their is some probability they observe the unbounded signal of X1, and in each state

their is some fixed strictly positive probability this signal overturns any belief.

In this setting, we can first note that if an agent does in fact get to observe X1, their accuracy

(conditional on this) will be related to αn−1 by the function H(αn−1) = α2
n−1 −αn +1 (the working

for this can be seen in The Unbounded Signal Case in the proof of Proposition 6). If they do not get

to observe X1, they will match the state with the same probability as their predecessor, as they will

simply copy him. Hence:

αn = (1− 1

en
)αn−1 +

1

en
H(αn−1)

= αn−1 +
1

en

(
H(αn−1)− αn−1

)
First of all, note that H(α) > α for any α ∈ [0.5, 1] (any agent can never do worse than tossing

a coin, so this is the domain of α), so agents are always managing to improve on their predecessors,

11The agent could face one affordable signal that can generate arbitrarily strong private beliefs in one
direction, and a separate signal that generates arbitrarily strong private beliefs in the other, without having
access to any individual signal that is unbounded.
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and this improvement is always strict.

αn < αn−1 +
1

en

(
0.8125− 0.75)

The gradient of H is strictly decreasing, so the improvement from α2 to α3 given by H is strictly

below that of the improvement from α1 to α2, hence H(αn−1 − αn−1) < 0.8125− 0.75 = 0.0625 for

any n ∈ {3, ...}.
αn < αn−1 +

1

en

(
0.0625)

αn < α1 + 0.0625

n∑
i=2

1

ei

Let us call the limiting value of αn, α, then we have that:

α = 0.75 + 0.0625
1

e− 1
= 0.786(3d.p.)

Thus we do not have complete learning here, even though every agent has affordable overturning

information. The path of α is display in Figures 1a and 1b by the orange lines. In the blue line I show

the path of alpha if we replace the probability 1
en with 1

n+1 , which also fails to produce complete

learning.

(a) Path over the first million agents (b) Path over the first five agents

Figure 4: In the scenarios represented by both of these curves, agents all have access to
affordable overturning information, but nonetheless they do not learn.

Proof of Proposition 3. The necessity of affordable information is trivial; if agents observe no private

information they cannot learn at all. To see that affordable overturning information is not necessary,

consider a network of agents in which each agent n can observe all of his predecessors at zero

cost with probability pn, but otherwise must pay some very large cost C to observe even a single

predecessor12. Suppose that each agent can observe a bounded private experiment at zero cost, but

no other information is available. If we further impose that pn → 1 as n → ∞, but that it does so

12C must be high enough that the agents never choose to pay this cost to observe predecessors.
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sufficiently slowly (e.g. pn = 1− 1
n) that agents face cost C to observe predecessors infinitely often,

then we have complete learning by the same martingale arguments that establish Theorem 3 in

Cremin (2025). The argument behind Theorem 4 in Cremin (2023) also works to establish this.

Proof of Proposition 4. Before moving on to the complete statement, let us consider instead settings

in which agents must certainly spend at least c to observe any neighbor. This can then be easily

extended.

To see the truth of this proposition, first note that agents will observe the private signal first,

since it is free, and may spare them the cost of observing the social signal at all. Since this signal is

unbounded, with non-zero probability it will generate a private belief in the set [c, 1− c]C , where c is

the minimum cost of observing a neighbor. Having formed this strong belief, the agent could simply

choose their preferred action and gain an expected utility greater than 1 − c. Given this, they can

only perform worse by spending c (or more) to observe a predecessor, even if that predecessor were

a perfectly revealing signal of the state of the world.

Denote as Pc(θ) the probability that X1 produces a signal within [c, 1− c]C in state θ, it follows

that the ex-ante probability with which the agent matches the true state is bounded above as follows:

αn ≤ P(θ = 0)
{
Pc(0)P(ς < 0.5|ς ∈ [c, 1− c]C , θ = 0) +

(
1− Pc(0)

)
× 1
}

+ P(θ = 1)
{
Pc(1)P(ς ≥ 0.5|ς ∈ [c, 1− c]C , θ = 1) +

(
1− Pc(1)

)
× 1
}

αn ≤ 1

2

{
Pc(0)P(ς < 0.5|ς ∈ [c, 1− c]C , θ = 0) + 1− Pc(0)

}
+

1

2

{
Pc(1)P(ς ≥ 0.5|ς ∈ [c, 1− c]C , θ = 1) + 1− Pc(1)

}
Each bracketed term is strictly less than 1, so it follows that αn is bounded away from 1 for arbitrary

n.

Note that if instead we had that agents only need to pay a minimum neighbor-observation cost

of c with some probability δ > 0, we can make the same argument. The probability that is bounded

away from one is now their success probability in the event that they receive a private signal outside

of [c, 1− c]C and must pay this cost of c. The relevant probabilities are then Pc(0)× δ and Pc(1)× δ.

Finally, to prevent complete learning, we only need to be able to make this argument for infinitely

many agents, rather than all of them. This produces the final statement of the proposition.

Proof of Proposition 5. Each statement can be established with an example:

(1) Making a network more connected can increase asymptotic accuracy :

Let us suppose that the private information environment is as follows:

• E = {X1}

• CP
n (X1) = 0
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• X1 has probability density functions {f0(s), f1(s)} = {2(1− s), 2s}

In words, I suppose that all agents have free access to a single unbounded experiment with the

signal structure given above, but no other private signal is available. As for the network topology,

let us say that at first it involves agents being able to observe only their immediate predecessor at

cost c1 > 0, but in the second instance shall cost c2 < c1.

• At first ∀n cn,n−1 = c1 > 0, but cn,n−j > 1 ∀j ∈ {2, n− 1}

• Then the network topology shall change such that ∀n cn,n−1 = c2 < c1, but otherwise the

social cost functions are the same.

Observe that clearly the second topology is strictly more connected than the first, given definition

8. Also note that every agent will always choose to observe their private signal, since it is free, and

will necessarily do so first, since for some sufficiently strong signal realizations it will spare them

the expense of observing the social signal. Given the symmetry of the private signal structure, it is

without loss to suppose that θ = 1.

For which private signal realizations will our agent choose not to observe their predecessor? If

they observe signal realization ς, by the assumed normalization their interim belief is ς. Suppose

without loss that this is greater than 0.5 and the agent is choosing xn = 1. Their social signal choice

problem is to decided whether or not to ignore the social signal given that belief. If they choose to

ignore the social signal, they gain expected utility:

EU(B(n) = {n− 1}) = ς × 1 + (1− ς)0 = ς

If they choose to observe it, they instead get:

EU(B(n) = {n− 1}) =

{
P(xn = 0, θ = 0|Observed xn−1, s = ς)× 1

+ P(xn = 1, θ = 1|Observed xn−1, s = ς)× 1

}
+ 0− c1

(B.1)

(B.2)

Suppressing the ‘Observed’ for brevity, we can compute these probabilities:

P(xn = 0, θ = 0|xn−1, s = ς) = P(xn = 0|θ = 0, xn−1, s = ς)P(θ = 0|xn−1, s = ς)

=
[
P(sbn(0) < 1− ς|θ = 0)P(xn−1 = 0|θ = 0)

+ 0× P(xn−1 = 1|θ = 0)
]
P(θ = 0|s = ς)

The first probability on the right-hand side here can be expressed in this fashion using Lemma 1,

where sbn(0) denotes the social belief of n after observing xn−1 = 0. If agent n− 1 chose xn−1 = 1,

n will clearly choose xn = 1, hence the zero. In the second probability “Observed xn−1” is a choice

variable, and thus clearly carries no additional information for the agent. We can also see immediately
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that P(θ = 0|s = ς) = 1− ς, use from above that sbn(0) = 1− αn−1, and note that the symmetry of

the problem gives that P(xn−1 = 0|θ = 0) = αn−1.

P(xn = 0, θ = 0|xn−1, s = ς) = I
(
1− αn−1 < 1− ς

)
αn−1(1− ς)

= I
(
αn−1 > ς

)
αn−1(1− ς)

P(xn = 1, θ = 1|Observed xn−1, s = ς) = P(xn = 1|θ = 1, xn−1, s = ς)P(θ = 1|xn−1, s = ς)

=
[
P(sbn(0) ≥ 1− ς|θ = 1)P(xn−1 = 0|θ = 1)

+ 1× P(xn−1 = 1|θ = 1)
]
P(θ = 1|s = ς)

=
[
I(1− αn−1 ≥ 1− ς)(1− αn−1) + 1× αn−1

]
ς

=
[
I(1− αn−1 ≥ 1− ς)(1− αn−1) + αn−1

]
ς

Feeding this back into Equation B.2, we get:

EU(B(n) = {n− 1}) = I
(
αn−1 > ς

)
αn−1(1− ς) +

[(
1− I

(
αn−1 > ς

))
(1− αn−1) + αn−1

]
ς − c1

= I
(
αn−1 > ς

)
αn−1(1− ς) +

[
(1− αn−1)− I

(
αn−1 > ς

)
(1− αn−1) + αn−1

]
ς − c1

= I
(
αn−1 > ς

)
αn−1(1− ς) +

[
1− I

(
αn−1 > ς

)
(1− αn−1)

]
ς − c1

= I
(
αn−1 > ς

)
αn−1(1− ς)−

[
I
(
αn−1 > ς

)
(1− αn−1)

]
ς + s− c1

= I
(
αn−1 > ς

)
(αn−1 − αn−1ς)−

[
I
(
αn−1 > ς

)
(ς − αn−1ς)

]
+ ς − c1

= I
(
αn−1 > ς

)
(αn−1 − αn−1ς − ς + ςαn−1) + ς − c1

= I
(
αn−1 > ς

){
αn−1 − ς

}
+ ς − c1

Hence, upon observing ς > 0.5 the agent will choose to observe their immediate predecessor after

observing ς if:

I
(
αn−1 > ς

){
αn−1 − ς

}
− c1 ≥ 0

or if both αn−1 > ς and αn−1 ≥ ς + c1. Clearly the latter implies the former, and highlights the

distortion introduced by adding a neighbor-observation cost of c1, this introduces a wedge between

αn−1 and ς such that the agent will not observe the signal whenever αn−1 > ς, but instead needs

this stricter condition to be satisfied.

By symmetry, if they observe a private signal below 0.5, they will observe their predecessor if

(1− αn−1) ≤ ς − c1 ⇐⇒ ς ≥ 1− αn−1 + c1.

Here I am assuming they break ties in favour of observing their predecessor.

There are three distinct paths to choosing correctly:

• The get such a strong ς in favour of 1 that they choose xn = 1 and do not observe the social

signal.

• They get a signal in favour of 1 that can be over-turned by the social signal, but the social

signal is correct too.
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• They get a signal against one, but weak enough that they look at the signal, and it is for the

correct state.

For n > 1, assuming that 0.5 < αn−1 − c1,
13

αn = P(ς ≥ αn−1 − c1|θ = 1) +

∫ αn−1−c1

0.5
P(xn−1 = 1)g1(s)ds

+

∫ 0.5

1−αn−1+c1

P(xn−1 = 1)g1(s)ds+ 0

αn = P(ς ≥ αn−1 − c1|θ = 1) +

∫ αn−1−c1

1−αn−1+c1

P(xn−1 = 1)g1(s)ds

αn = P(ς ≥ αn−1 − c1|θ = 1) +

∫ αn−1−c1

1−αn−1+c1

P(xn−1 = 1)g1(s)ds

= 1−G1(αn−1 − c1) + αn−1

{
G1(αn−1 − c1)−G1(1− αn−1 + c1)

}
Given the private signal structure I have assumed here, G1(s) = s2. Hence this boils down to:

αn = 1− (αn−1 − c1)
2 + αn−1

{
(αn−1 − c1)

2 − (1− αn−1 + c1)
2
}

= 1− (1− αn−1)(αn−1 − c1)
2 − αn−1(1− αn−1 + c1)

2

= 1− (1− αn−1)(αn−1 − c1)
2 − αn−1(1− (αn−1 − c1))

2

= 1− (1− αn−1)(αn−1 − c1)
2 − αn−1(1− 2(αn−1 − c1) + (αn−1 − c1)

2)

= 1− (1− αn−1)(αn−1 − c1)
2 − αn−1 + 2αn−1(αn−1 − c1)− αn−1(αn−1 − c1)

2

= 1− (αn−1 − c1)
2 − αn−1 + 2αn−1(αn−1 − c1)

= 1− α2
n−1 + 2αn−1c1 − c21 − αn−1 + 2α2

n−1 − 2αn−1c1

= 1 + α2
n−1 − αn−1 − c21

Note that c1 must be less than 0.25 for any learning to take place at all here. To find the

asymptotic value of αn, let us set αn = αn−1 = α here:

0 = α2 − 2α+ (1− c21)

α = 1− c1

Hence in this example, accuracy will converge in the long run to exactly 1− c1, giving us a neat

example in which reducing the cost c1 and making the network strictly more connected will cause a

smooth increase in asymptotic accuracy (below c1 = 0.25). This establishes the result.

(2) Making a network more connected can reduce asymptotic accuracy :

For this part, let’s consider the network topology in the previous example. Now, however, let

13Otherwise every agent has accuracy 0.52 − 0.5 + 1 =: α1.
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Figure 2a: The blue line here is with c = 0.15, and the orange c = 0.2.

us imagine introducing a free link between each agent after 2 and agent 1. This clearly makes the

network strictly more connected.

Specifically, in the second network topology, let us assume that:

• For all n > 2, cn,1 = 0 and L=1.

• For all n > 1, cn,n−1 = c1 = 0.15.

We can see the following:

• Agent 1 has an accuracy of α1 = 0.75

• Agent 2 has an accuracy of α2 = 0.79 using αn = 1 + α2
n−1 − αn−1 − c21.

If player 3 observes a private signal that generates a belief stronger than 0.79 (higher than 0.79

or lower than 0.21), they will not gain anything observing either predecessor (though they may as

well observe agent 1 as this is free). If their private belief were weaker than 0.79 but stronger than

0.75, they would gain something observing agent 2, but nothing observing agent 1: agent 2 costs

0.15 to observe though. If player 3 observes player 2 with private signal realization ς, they get the

correct state with probability α2 rather than ς. Since in this range alpha2 − ς < 0.15, they will not

observe agent 2. If ς ∈ [0.25, 0.75], they gain by observing either agent 1 or agent 2, and in the event

of observing them will have success probability 0.75 and 0.79 respectively, this difference does not

justify the cost of observing 2, so they will observe 1. In other words, in computing the accuracy

of agent 3 we can act as if only agent 1 is available, and they will certainly observe agent 1. Their

accuracy is then α3 = 1 + 0.752 − 0.75 = 0.8125.

For agent 4 we can deploy a similar line of reasoning, the only difference being that the accuracy

gap between their two options (3 and 4) is slightly larger (0.8125 − 0.75 = 0.0625 rather than

0.79 − 0.75 = 0.04). This does not invalidate any step in the previous line of reasoning though, so
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agent 4 observes 1 instead of 3 as well. Agent 5 in turn observes 1 instead of 4, and so on and so forth.

The negative informational externalities of these decisions ensure that we achieve a lower asymptotic

accuracy even with a strictly more connected network.

Figure 2b: The blue line here is with c = 0.15 before free links to agent 1 are added, and the
orange after.

Proof of Proposition 6. (1) Making private signals more informative can increase asymptotic ac-

curacy :

For this example, suppose that the social cost functions are the similar to those from the first

example in the proof of Proposition B, except that observing one’s immediate predecessor is now

free. Our cost functions are thus such that ∀n CS
n ({n− 1}) = 0, but CS

n (n− j) > 1 ∀j ∈ {2, n− 1}.
Suppose that in the first instance agents have access to a the following bounded private signal:

• E = {X1}

• CP
n (X1) = 0

• X1 has probability density functions {f∗
0 (s), f

∗
1 (s)} with an atom on 0.5 with probability 1−

F1(0.8) + F1(0.2):

f∗
0 (s) =

2(1− s) if s ∈ [0.2, 0.8] \ {0.5}

1− F1(0.8) + F1(0.2) if s = 0.5

and

f∗
1 (s) =

2s if s ∈ [0.2, 0.8] \ {0.5}

1− F1(0.8) + F1(0.2) if s = 0.5
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Note that this is simply the private signal distribution from before, except I have stripped its ability

to produce beliefs above outside [0.2, 0.8], and reassigned that probability to 0.5 (this probability has

the same expression due to their symmetry).

Now suppose that we move from this world to one in which the agents instead observe the private

signal distribution given by: {f0(s), f1(s)} = {2(1 − s), 2s}. In the original case, agents in the line

network will eventually ignore there private signal in favour of copying their predecessor (and choose

the same action in perpetuity), and there is a non-zero probability that they choose the incorrect

action forever.

The Bounded Signal Case:

First, let us consider the bounded signal case. If a predecessor has α ∈ [0.2, 0.8]C , the alpha of our

agent is clearly the same α since they ignore their own private signal. If α ∈ [0.2, 0.8], it is possible

that they will observe an overturning private signal. Due to the symmetry of this example, we can

take the case that θ = 1 without loss.

αn = P(xn−1 = 1|θ = 1)× P(s ≥ 1− αn−1|θ = 1) + P(xn−1 = 0|θ = 1)× P(s ≥ αn−1|θ = 1)

= αn−1P(s ≥ 1− αn−1|θ = 1) + (1− αn−1)× P(s ≥ αn−1|θ = 1)

= αn−1(1−G∗
1(1− αn−1)) + (1− αn−1)(1−G∗

1(αn−1))

=
132

100
αn−1 + (1− αn−1)

2 − 36

100

αn = α2
n−1 −

68

100
αn−1 +

64

100

The Unbounded Signal Case: The reasoning here is exactly the same, except that we are using

the distribution functions corresponding to the unbounded signal: {G0,G1}.

αn = αn−1(1−G1(1− αn−1)) + (1− αn−1)(1−G1(αn−1))

= αn−1(1− (1− αn−1)
2) + (1− αn−1)(1− (αn−1)

2)

= αn−1(1− (1− αn−1)
2) + (1− αn−1)

2(1 + αn−1)

= αn−1 − αn−1(1− αn−1)
2 + (1− αn−1)

2 + αn−1(1− αn−1)
2

= αn−1 + (1− αn−1)
2

= α2
n−1 − αn−1 + 1

In other words, we just have a normal line network of Bayesians here, and we achieve complete

learning.

Comparison:

We can thus graph the path of αn in these two settings, and see the result in Figure 3a. Setting

αn = αn−1 = α gives us that the limit of the bounded signal process is 0.584 (3d.p.), and we can see
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the graph converging to this. The unbounded process, as discussed, instead gives complete learning

as is clearly displayed by the blue line.

Figure 3a: The orange line shows the accuracy of agents receiving the less informative, bounded
signal. We have complete learning in the unbounded case, and it is clear that reducing the
informativeness of the signals hurts learning here.

(2) Making private signals more informative can decrease asymptotic accuracy :

Consider a network topology involving the following:

• For all n > 2, cn,1 = 0, and L = 1.

• For all n > 2, cn,n−1 = 0.15.

• For n = 2, cn,1 > 1.

In the two scenarios, let the private information structure be as follows:

• E1 = {X1, X2} whereX1 is an unbounded private experiment with density functions {f0(s), f1(s)} =

{2(1 − s), 2s}, and X2 is a symmetric Bernoulli trial with success parameter p1 = 0.5. We

have the costs functions CP
1 (X1) > 1 and CP

1 (X2) = 0 for agent one, and CP
n (X1) = 0 and

CP
n (X2) = 0 for all n > 1.

• E2 = {X1, X2} whereX1 is an unbounded private experiment with density functions {f †,ϵ
0 (s), f †1,ϵ(s)},

specified momentarily, and X2 is a symmetric Bernoulli trial with success parameter p2 = 0.77.

The cost functions for these experiments are the same as in scenario 1.
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f †,ϵ
θ (s) =



fθ(s) if s ∈ [0.5− ϵ, 0.5 + ϵ]C

0 if s ∈ [0.5− ϵ, 0.5 + ϵ]

(0.5 + ϵ)×
{
Fθ(0.5 + ϵ)− Fθ(0.5− ϵ)

}
s = θ

(0.5− ϵ)×
{
Fθ(0.5 + ϵ)− Fθ(0.5− ϵ)

}
s = 1− θ

Note that it does not matter whether we use F1 or F0 here due to the symmetry of this signal distri-

bution. I have constructed this signal structure so that {f †,ϵ
0 (s), f †,ϵ

1 (s)} strictly Blackwell dominates

{f †,ϵ′
0 (s), f †,ϵ′

1 (s)} if ϵ > ϵ′. This implies that any such signal structure with ϵ > 0 strictly Blackwell

dominates {f0(s), f1(s)}, and with some abuse of terminology can be seen to do so by less and less

as ϵ → 0. Hence, in the second scenario, all agents observe a private signal that strictly Blackwell

dominates what they were able to observe in the first.

The idea here will be the same as that of part 2 of Proposition 5, except that we shall break the

line-network improvement path by increasing the informativeness of agent 1’s private signal, rather

than by reducing the cost of observing him as before.

In the first scenario, this situation is the same as that of the blue line in Figure 2b, except that

here agent n+ 1 corresponds to agent n, so the asymptotic accuracy of agents here is 0.85.

In the second scenario, the accuracy of agent 1 is α1 = 0.77, so agent 3 will of course observe 1

rather than 2 since it costs less and is more informative (if his signal is strong enough, both add no

value but 1 is at least free). The improvement functions from earlier do not quite hold now, as the

private signals of agents 2 onwards are different, but we can choose low enough ϵ that the functions

are arbitrarily close to the true values. Agent 3’s accuracy will be approximately (due to the ϵ > 0)

0.772 − 0.77 + 1 = 0.8229. This is not 0.23 greater than 0.77, so all subsequent agents shall observe

agent 1 instead of their predecessor as well.

So with such a set-up, in scenario 1 they converge to 0.85 and we have complete learning. In

scenario 2, every agent 3 onwards observes agent 1 and the asymptotic success rate is 0.8229 < 0.85.

Hence even though all we have done is strictly improved the Blackwell informativeness of everyone’s

signals, we have reduced asymptotic learning. This can be seen in the Figure below.

C A More General Model of Social Costs

Here I present the more general model of social costs of which my main model is a restriction.

Every choice of parameters in the model of my main article can be re-expressed in the terminology

of this one, and all results proved in this paper apply to this more general model as well.

In models of social learning in which the observational network is exogenous, there is no need

to distinguish between different notions of the network topology. Here, however, this is not the case
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Figure 5: Figure 3b: Blackwell-Preferred Signals can Produce Lower Accuracy

(each agent n chooses his own neighborhood B(n)), and I discuss several useful network topology

definitions in Section C.0.1. The exogenous object in this model to which I refer as the ‘network

topology’ is simply the set of social cost function distributions for all agents, where nature draws

for each agent a function that specifies how costly it is for that agent to observe any subset of

their predecessors CS
n : 2{1,...,n−1} → R+ ∼ ∆S

n(R2{1,...,n−1}
+ ). I assume that the cost of observing

predecessors is at least weakly increasing in set inclusion, i.e. that if A ⊆ B, CS
n (A) ≤ CS

n (B), and

that each agent’s social cost function is independent of both the state of the world, θ, and the cost

functions of all other agents.

Definition 5 ((Cost Function) Network Topology). The network topology of a given game is the

sequence of all agents’ social cost function distributions: ∆S = {∆S
n}n∈N.

I discuss several useful network topology definitions next in this appendix, in Section C.0.1. The

exogenous object in this model to which I refer as the ‘network topology’ is simply the set of social

cost function distributions for all agents, where nature draws for each agent a function that specifies

how costly it is for that agent to observe any subset of their predecessors CS
n : 2{1,...,n−1} → R+ ∼

∆S
n(R2{1,...,n−1}

+ ). I assume that the cost of observing predecessors is at least weakly increasing in

set inclusion, i.e. that if A ⊆ B, CS
n (A) ≤ CS

n (B), and that each agent’s social cost function is

independent of both the state of the world, θ, and the cost functions of all other agents.

Definition 6 (Cost Function Network Topology). The network topology of a given game is the

sequence of all agents’ social cost function distributions: ∆S = {∆S
n}n∈N.

C.0.1 Network Topologies

Given a specific cost function network topology, and a given equilibrium σ ∈ Σ, agents choose

which predecessors they observe in order to maximise their expected utility. In the event that they
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choose to observe a private signal first, they may choose their neighbors as a function of their private

signal realization. Courtesy of this, the endogenous probability with which an agent observes a given

neighborhood in equilibrium depends on the state. Hence, for each agent this implies a pair of

endogenous neighborhood distributions {Qn
σ,θ}θ∈Θ, and the sequence of these distributions make up

the Endogenous Observation Network Topology for Equilibrium σ: {{Qn
σ,θ}θ∈Θ}n∈N.

In addition to this, it will be useful to consider the weighted network in which we include a

link between each agent and all predecessors they can observe at finite cost, where the weight for

each link is the cost of observing only that individual predecessor. For each agent, let us denote the

distribution over weighted neighborhoods implied by this Wn. The collection of all such distributions

{Wn}n∈N shall make up the Weighted Single-Neighbor Network Topology. In addition to this it will

be useful to consider the network containing only the cheapest link for each agent in each realization

of the graph (or links if multiple neighbors have the same weight for some agent), {W∗
n}n∈N. Finally,

let us use a superscript c to denote the network topology produced by stripping out all links with

cost strictly greater than c. I summarise all these terms in the following definition.

Definition 7. Network Topolopies The following network topology concepts shall be useful:

• The Network Topology is as defined in Definition 6.

• The Endogenous Observation Network Topology for Equilibrium σ, {{Qn
σ,θ}θ∈Θ}n∈N,

is the sequence of pairs (one for each state) of neighborhood distributions induced by the Net-

work Topology and strategy profile in equilibrium σ.

• The Weighted Single-Neighbor Network Topology, {Wn}n∈N, is the sequence of distribu-

tions over weighted graphs (one distribution Wn for each agent, with one realization Wn ∈ Wn)

in which the link between n and n − j implied by a given realization of the cost functions has

weight CS
n ({n− j}) ∀j ∈ {1, ..., n− 1}.

• The Cheapest Neighbor Network Topology, {W∗
n}n∈N, is the same as the weighted single-

neighbor network topology, except that for every agent n and neighborhood realization for that

agent n we delete all links except those with the minimum weight argminj∈{1,...,n−1}{CS
n ({n−

j})}.

Beyond defining different notions of network topology, it will also be useful to define in what

sense I will speak of one network topology being more or less connected than another.

Definition 8 (Connectedness Order over Network Topologies ⪰C). One network topology ∆S
n,1 is

more connected than a second ∆S
n,2, ∆

S
n,1 ⪰C ∆S

n,2, if for any n ∈ N, and any set of predecessors

A ⊆ 2{1,...,n−1}, the cost of observing A in the first network topology is at least weakly less than

the cost of doing so in the second with probability 1. ∆S
n,1 is strictly more connected than ∆S

n,2 if

∆S
n,1 ⪰C ∆S

n,2 but not ∆S
n,2 ⪰C ∆S

n,1.
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Note that for one network topology to be strictly more connected than another in this sense

is a very strong requirement in a few ways, since we need every possible neighborhood for every

single agent to be at least as cheap almost surely, with at least some non-zero probability than some

neighborhood of some agent is strictly cheaper. On the other hand, we only need one neighborhood

of one agent to be strictly cheaper with some (possibly arbitrarily small) probability ϵ > 0.
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